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ABSTRACT 

 Microcantilever (MC) sensors have emerged as sensing transducers that 

offer greater sensitivity than comparable sensors due in large part to their very 

small dimensions.  MCs have been utilized in many chemical sensing 

applications.  Not only do MCs demonstrate greater sensitivity, but they also are 

relatively low in cost, they can be used in an array format, and they can be 

integrated into on-chip electronic circuitry. 

 While MC sensors demonstrate great sensitivity, an area of weakness that 

MC sensors must overcome is that of selectivity.  The response of a MC sensor to 

analyte is mechanical; these mechanical responses lack the information rich 

spectral features like those found in vibrational spectroscopic techniques.  Thus 

the underlying goal of this research is to develop approaches to enhancing 

selectivity in MC sensors.   

The initial research focused simply on demonstrating that MC sensors 

could be functionalized with thiolated self-assembled monolayers (SAMs) and 

then used to detect metal ions in the liquid phase.  The initial research not only 

demonstrated the moderate selectivity of SAMs to metal ions, but also the good 

sensitivity at which these metal ions could be detected. 

 The second phase of the research represented the first time that 

microcantilever array sensors (MCAs) were functionalized with SAMs having 

different ligand functionalities on one sensor chip.  The MCA was exposed to 

different metal ions and the response signatures used in conjunction with pattern 

recognition algorithms to identify and quantitate the metal ion injected. 
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 In an extension of the metal ion array research, the SAM MCA was 

coupled to an ion-exchange chromatography (IEC) column for the separation and 

detection of metal ions. 

 The second major division of research presented in this work involves 

improving the selectivity of detection of analytes in the gas phase.  MCAs 

differentially coated with polymeric RPs by way of PVD were made.  

Experimental parameters were adjusted to determine if the parameters would 

impact the selectivity of the MCA.    

The final project involved taking the former gas phase project a step 

further by invoking the use of gas chromatography (GC) to impart selectivity to 

the system.   

 

 

 

 

 

 

 

 

 

 

 

 



 vii

TABLE OF CONTENTS 

CHAPTER 1: INTRODUCTION TO CHEMICAL SENSORS AND 

MICROCANTILEVER SENSORS .................................................................... 1 

1.1  INTRODUCTION TO CHEMICAL SENSORS......................................... 1 

1.2  MASS SENSORS ........................................................................................ 3 

1.2.1  Quartz Crystal Microbalance Sensors................................................... 3 

1.2.2  Surface Acoustic Wave Sensors ........................................................... 6 

1.2.3  Flexural Plate Wave Sensors ................................................................ 8 

1.3 MICROCANTILEVER SENSORS............................................................ 10 

1.3.1 Historical Background ......................................................................... 10 

1.3.2 Static Mode .......................................................................................... 14 

1.3.3 Dynamic Mode..................................................................................... 18 

1.3.4 Readout Methods ................................................................................. 19 

CHAPTER 2: CHARACTERIZATION OF LIGAND-FUNCTIONALIZED 

MICROCANTILEVERS FOR METAL ION SENSING ............................... 25 

2.1 INTRODUCTION ...................................................................................... 25 

2.2 EXPERIMENTAL...................................................................................... 29 

2.3 RESULTS AND DISCUSSION................................................................. 33 

CHAPTER 3: DIFFERENTIALY LIGAND-FUNTIONALIZED 

MICROCANTILEVER ARRAYS FOR METAL ION IDENTIFICATION 

AND SENSING ................................................................................................... 49 

3.1 INRODUCTION......................................................................................... 49 

3.2 EXPERIMENTAL...................................................................................... 52 



 viii

3.3 RESULTS AND DISCUSSION................................................................. 61 

3.4 FURTHER WORK: MICROCANTILEVER LC HYPHENATION......... 74 

3.4.1 Introduction.......................................................................................... 74 

3.4.2 Experimental ........................................................................................ 75 

3.4.3 Results and Discussion ........................................................................ 77 

CHAPTER 4: DIFFERENTIALLY POLYMER COATED 

MICROCANTILEVER ARRAYS FOR GAS PHASE SENSING AND 

IDENTIFICATION ............................................................................................ 95 

4.1 INTRODUCTION ...................................................................................... 95 

4.2 EXPERIMENTAL...................................................................................... 96 

4.3 RESULTS AND DISCUSSION............................................................... 100 

CHAPTER 5: FACILE HYPHENATION OF GAS CHROMATOGRAPHY 

AND A MICROCANTILEVER ARRAY SENSOR FOR ENHANCED 

SELECTIVITY ................................................................................................. 113 

5.1 INTRODUCTION .................................................................................... 113 

5.2 EXPERIMENTAL.................................................................................... 115 

5.3 RESULTS AND DISCUSSION............................................................... 123 

CHAPTER 6: CONCLUSIONS ...................................................................... 138 

REFERENCES.................................................................................................. 141 

VITA................................................................................................................... 149 

 

 

 



 ix

LIST OF TABLES 
TABLE                                                                                                            PAGE 
 
Table 1 List of Thiolated Ligands ........................................................................ 30 

Table 2 List of Thiolated Ligands ........................................................................ 53 

Table 3 Optimized concentrations of ligand solutions......................................... 55 

Table 4 The slope, r-squared value, and RSDs .................................................... 69 

Table 5 Generalized prediction rates ................................................................... 72 

Table 6 RPs used for gas phase sensing array...................................................... 98 

Table 7 Predicted vs. actual concentration for gas mixture. .............................. 105 

Table 8  List of compounds used as RPs............................................................ 117 

Table 9 The reproducibility (%RSD) of peak heights and peak areas ............... 130 

Table 10 The effects of column flow rate on GC-MCAD peak retention ......... 135 

 

 
       
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 x

LIST OF FIGURES 
FIGURE          PAGE 
 
Figure 1 Quartz crystal microbalance . .................................................................. 5 

Figure 2 Surface Acoustic Wave Sensor................................................................ 7 

Figure 3 Flexural Plate Wave Sensor..................................................................... 9 

Figure 4 Microfabrication of MCs ....................................................................... 13 

Figure 5 Static Mode Bending of MC.................................................................. 16 

Figure 6 Optical Detection Scheme ..................................................................... 20 

Figure 7 Schematic representation of the molecular structure of the SAM ........ 34 

Figure 8 Time trace of SAM coated MC on exposure to Cs+. ............................ 37 

Figure 9 Comparison of the bending responses . ................................................. 40 

Figure 10 Effect of immersion time . ................................................................... 42 

Figure 11 Response (maximum bending) selectivity for metal ion . ................... 44 

Figure 12 Concentration-based response curve of AET . .................................... 47 

Figure 13 The effect of dealloyed thickness . ...................................................... 62 

Figure 14 Surface thiolation studies .................................................................... 64 

Figure 15 The ability to differentially functionalize. ........................................... 67 

Figure 16  The response diversity to each metal ion............................................ 71 

Figure 17 Cation Exchange Separation of metal ions.......................................... 79 

Figure 18 Triplicate measurements of 0.1 mmol/L CoCl2. ................................. 81 

Figure 19 The separation of metal ions using a strong cation exchange column. 82 

Figure 20 Effects of laser warm-up time on noise levels..................................... 86 

Figure 21 Peak tailing demonstrated ................................................................... 88 



 xi

Figure 22 Flow profiles in several different flow cell geometries are depicted. . 90 

Figure 23 Flow rate study with new flow cell design. ......................................... 92 

Figure 24 FT-IR spectra of polymer PDPP before and after vapor deposition.. 101 

Figure 25 Response of 10 RP coated MCs to 10% TCE . ................................. 103 

Figure 26 Temperature effects on response. ...................................................... 108 

Figure 27 Humidity effects on the response. ..................................................... 110 

Figure 28 Illustrations detailing the ease of instrumental hyphenation. ............ 119 

Figure 29 The response variability (selectivity) is displayed. ........................... 124 

Figure 30 Singular values obtained from the full calibration set. ...................... 126 

Figure 31 A separation of a VOC mixture......................................................... 128 

Figure 32 Response of TBATS coated cantilever.............................................. 131 

 
 
 
 
 

 
 
 

 
 
 

   
           

 

 

 

 

 



 xii

ABBREVIATIONS AND SYMBOLS 

Acr   Cross-sectional Area 

As   Peak Asymmetry 

AB   Acetate Buffer 

AcβCD  Acetyl-β-cyclodextrin 

AET   2-Aminoethanethiol 

AFM  Atomic Force Microscopy 

ANN  Artificial Neural Networks 

ATP   4-Aminothiophenol 

APTES  3-Amino propyl triethoxy silane 

Cal-4  4-tert-Butylcalix[6]arene 

Cal-6  4-tert-Butylcalix[4]arene 

CCD   Charge-coupled Device 

CuPC  Copper Phthalocyanine 

cm   Mass Sensitivity Factor 

DA   Dealloyed 

E   Young’s Modulus 

f   Frequency 

f0   Initial Frequency 

HF   Hydrofluoric Acid 

HPLC  High Performance Liquid Chromatography 

ICA   Independent Component Analysis 

IDT   Interdigital Transducer 



 xiii

IEC   Ion-exchange Chromatography 

kf   Frequency Constant of the Crystal 

LPCVD  Low Pressure Chemical Vapor Deposition 

MBA  o-Mercaptobenzoic Acid 

MC   Microcantilever 

MCA  Microcantilever Array 

MCAD  Microcantilever Array Detector 

MeβCD  Methyl-β-cyclodextrin 

MEMS  Micro-electro-mechanical Systems 

MP   3-Mercaptopropanol 

MPA  3-Mercaptopropionic Acid   

MRP   Molecular Recognition Phase 

MUA  11-Mercaptoundecanoic Acid 

MUD  11-Mercaptoundecanol 

Δma   Change in Mass 

Δms   Change in Surface Mass Density 

η   Liquid Viscosity 

ηq   Viscosity of Quartz    

ρm   Density of Applied Chemical Film 

ρq   Density of Quartz 

PCA   Principal Component Analysis 

PDPP  Poly(diphenoxyphosphazene) 

PECH  Poly(epichlorohydrin) 



 xiv

PECVD  Plasma-enhanced Chemical Vapor Deposition 

PEI   Poly(ethyleneimine) 

PIB   Poly(isobutylene) 

PSD   Position Sensitive Detector 

PVD   Physical Vapor Deposition 

QCM  Quartz Crystal Microbalance 

REI   Reactive Ion Etching 

RP   Responsive Phase 

RSD   Relative Standard Deviation 

SAM  Self-assembled Monolayer 

SERS  Surface Enhanced Raman Spectroscopy 

SVD   Singular Value Decomposition 

TBATS  Tetrabutylammonium p-toluenesulfonate 

TCD   Themal Conductivity Detector 

THPED  N,N,N’,N’-Tetrakis(2-hydroxypropyl)ethylenediamine 

VOC   Volatile Organic Compound 

ν   Poisson’s Ratio 

νo   Acoustic Wave Phase Velocity    

Δν   Change in Acoustic Wave Phase Velocity 

 

  

   



 1

CHAPTER 1: INTRODUCTION TO CHEMICAL SENSORS 
AND MICROCANTILEVER SENSORS 

 
1.1 INTRODUCTION TO CHEMICAL SENSORS 
 

Chemical sensors have benefited very much from the information age in 

which we live.  Handheld cellular devices allow us to receive phone calls, check 

our email, and surf the internet.  Chemical sensors give us information about the 

world around us and have been applied to almost every area of life.  The desire to 

know and to have access to information at our finger tips has undoubtedly aided 

the rise of chemical sensors.  To further discuss chemical sensors, a good working 

definition of chemical sensors should be established.  Bezegh and Janata have 

provided one of the most accepted definitions of a chemical sensor.  In their 

definition they define a chemical sensor as a transducer which provides direct 

information about the chemical composition of its environment; it is composed of 

a physical transducer and a chemically selective layer[1]. 

 In addition to a good working definition for chemical sensors, some ideal 

fundamental properties that all proper chemical sensors must possess should also 

be laid out.  The first fundamental property that a chemical sensor must possess is 

the sensor response must be proportional to the amount or concentration of the 

analyte to be measured.  A linear relationship of chemical sensor response over 

many orders of magnitude of analyte concentration is a desirable characteristic in 

chemical sensors.  The linearity and dynamic range of this relationship between a 

sensor and the analyte goes along way in determining specific sensor applications 

and overall acceptance as a legitimate chemical sensor.  The second fundamental 



 2

property related to an ideal chemical sensor is reversibility.  If the sensor is not 

completely reversible and all of the analyte is not removed after exposure of the 

sensor to the sample, then the sensor will become saturated after multiple 

exposures and not allow for sensing of the analyte, rendering the sensor useless.  

The third fundamental property of an ideal chemical sensor is that the sensor 

exhibit fast response times.  This property is very critical in processes where the 

sensor is placed in a flow cell and the sample is flowing by the sensor.  If the 

sensor is slow to respond to an analyte present for only a short period of time, the 

sensor will give a false negative.  In sensor applications such as biological warfare 

agent detectors, a false negative is the worst situation possible and could result in 

the loss of many innocent unsuspecting lives, simply because the sensor had a 

slow response time. 

 Additionally, it is important for sensors to be sensitive, reproducible and 

selective.  Extremely sensitive sensors allow for detection of very small amounts 

of analyte.  A reproducible sensor allows quantitative measurements to be made 

on an analyte.  A selective sensor provides the ability to distinguish between 

analytes. 

No perfect chemical sensor exists however.  Some chemical sensors have 

fast response times, but poor dynamic ranges.  Others are very reversible and 

show no hysteresis, but have slow response times.  In each sensor application, 

there is generally a balance of the good with the bad.  The quest to develop the 

perfect chemical sensor has enticed many to pursue chemical sensors as a research 

interest.  
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The range of types and applications of chemical sensors is too broad in 

scope to cover in this work.  Therefore, the remainder of this work will focus on a 

specific type of chemical sensor, the microcantilever (MC) sensor, but first mass 

sensitive chemical sensors related to MCs will be discussed. 

1.2  MASS SENSORS 
 
1.2.1  Quartz Crystal Microbalance Sensors 
 

Quartz crystal resonators were first used in radio-communication 

equipment to control frequency.  A relationship between the resonant frequency 

of these quartz crystal resonators and the amount of foreign material deposited on 

them has been known for some time[2].  A quantitative relationship, equation 1, 

between resonance frequency of quartz crystal resonators and amount of material 

deposited was not established until the quartz crystal microbalance (QCM) was 

first introduced by Sauerbrey in 1959[3] 

 cr

a2
0

f A
m

k
1 Δ−=Δ ff
mρ                       (1) 

where Δf is the change in frequency, ρm is the density of the chemical film, kf is 

the frequency constant, f0 is the fundamental resonance frequency of the crystal, 

Δma is the change in mass and Acr is the cross-sectional area of the crystal. 

Sauerbrey demonstrated that the decrease in resonant frequency of a vibrating 

quartz crystal resonator was proportional to the added mass.  Thus the first QCM 

was demonstrated. 

 QCM based sensors, shown in Figure 1, are coated with a metallic film to 

allow for electrical contact.  The crystal can then be coated with a selective 
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sensing coating specific to the analyte to be detected.  The coated QCM is then 

placed in an oscillation circuit where it resonates close to its fundamental 

frequency.  As analyte adsorbs onto the surface of the QCM, through interaction 

with the sensing layer, the resonance frequency of the QCM is altered.  The 

typical operational frequency range for QCM sensors is between 5-30 MHz, with 

measurable frequency changes as small as 1 Hz.  Equation 1 can be used to 

determine the mass of the adsorbed analyte if the measurements are made in the 

gas phase.  For liquid phase measurements, the equation must be altered (equation 

2) to account for the dramatic change in the fundamental resonance frequency of 

the QCM   

 ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=Δ qqff ρπη
ρη

2/3
0                (2) 

where Δf is the change in frequency, f0 is the fundamental resonance frequency of 

the crystal, ρ is the density of the surrounding liquid, η is the viscosity of the 

surrounding liquid, ηq is the viscosity of the quartz crystal, and ρq is the density of 

the quartz crystal. 

One of the limitations related to QCMs occurs when the sensors are used 

is viscous solutions, which dampen the resonance frequency of the QCM so much 

so that the sensitivity becomes limited.  The dampening is demonstrated by 

equation 1, where the change in frequency Δf divided by the Δma is proportional  
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Figure 1 Quartz crystal microbalance has a typical diameter of 1 cm and a 
thickness of 50 μm.  
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to resonance frequency (f0)2.  As the viscosity of the environment increases, Δma 

increases and the resonance frequency decreases. 

1.2.2  Surface Acoustic Wave Sensors 
 

Surface acoustic wave (SAW) sensors utilize a pair of interdigital 

transducers (IDT)[4, 5].  The IDTs are deposited onto a piezoelectric substrate in 

a configuration known as a delay line (Figure 2).  An alternating voltage is 

applied to each interdigital pair, which in turn creates an electric field in the 

piezoelectric material.  A surface wave travels along the surface of the sensor 

until it interacts with the second pair of digits, triggering an alternating voltage in 

the second pair of digits.  The electrical signal can then be detected and 

quantified.  When mass 

loading in the region between the digit pairs occurs, the loading causes the surface 

wave to change velocity[6].  This change in the surface wave velocity causes a 

change in the frequency (1 Hz routinely measured), therefore the change in 

frequency is related to the mass of loading by equation 3[7] 

s0
0

mΔ−=
Δ fc
v

v
m                (3) 

where Δν is the change in acoustic wave velocity, ν0 is the initial acoustic wave 

velocity, cm is the mass sensitivity factor, f0 is the fundamental resonance 

frequency and Δms is the change in mass loading.  SAW sensors operate at 

frequencies in the range of 30-300 MHz, higher than QCMs, rendering them more 

sensitive than QCM sensors.  SAW sensors can also be used in an array format to  
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enhance selectivity of the sensor.  The current limitation for SAW sensors is that 

they are not very applicable in liquid environments.  The surface waves are highly 

attenuated by the liquid phase which has limited SAW sensor’s use in this 

environment. 

1.2.3  Flexural Plate Wave Sensors 
 

Similar to SAW sensors flexural plate wave (FPW) sensors rely on the 

propagation of a wave along the sensor and its interaction with the analyte for 

sensing to occur (Figure 3).  The waves in FPW devices are known as Lamb 

waves.  Lamb waves travel through the entire width of a thin material.  Therefore, 

the entire plate is utilized in propagation of the wave rather than the wave 

propagating on the sensor surface as in SAW sensors[6].  Propagation through the 

entire plate is enabled by the fact that the thickness of the plate used in FPWs is 

much smaller than those used in SAW sensors.  The Lamb waves cause a 

mechanical flexing of the plate in FPW sensors, thus the name “flexural”[8].  The 

velocity of the wave decreases as the thickness of the plate decreases.  Just as in 

SAW and QCM sensors, the resonance frequency of the FPW is related to the 

mass loading of the sensor.   

The Lamb waves do not emit into the surrounding environment, therefore 

FPW sensors are easily adapted to liquid phase sensing[8].  FPW sensors are 

actually more sensitive than SAW sensors even though they oscillated at low 

frequencies.  This is because the Lamb waves are confined to the plate and 

therefore are more impacted by mass loading.  The drawback of FPW sensors is  

 



 9
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that preparation of the flexural plates involve a more complicated fabrication, thus 

the FPW sensors are more expensive than other comparable sensors. 

The focal point of this work and the final sensor discussed in this chapter, 

in much greater detail compared to previous sensors, is the MC sensor.  

Cantilever sensors currently are routinely used on the micrometer size.  However, 

cantilever sensors, compared to competing sensors, offer the ability to be further 

miniaturized to the nano-scale which will allow for the study of nano-mechanics.            

1.3 MICROCANTILEVER SENSORS 
 
1.3.1 Historical Background 
 

The foundations of MCs began to be laid in the mid 1920’s.  At that time, 

Meehan[9] observed that yellow pine charcoal would undergo adsorption-induced 

expansion when exposed to carbon dioxide vapors.  Not only did he demonstrate 

these adsorption induced effects, but he also demonstrated that these effects were 

reversible.  In 1954, Yates demonstrated that porous glass would expand when 

exposed to nonpolar gases such as argon, nitrogen, and oxygen[10].  The first 

mention of a cantilever mechanical transducer in the literature was detailed by 

Norton[11] in 1943.  In 1969 Shaver[12] designed a bi-metallic hydrogen detector 

based on a cantilever mechanical transducer.  In his work he was able to measure 

the presence of hydrogen gas at concentrations as low 50 ppm in a background of 

nitrogen gas. While the macrocantilever detectors described by Norton and 

Shaver were by no means on the micro scale, they did demonstrated that this 

sensor scheme could be employed for detection of various analytes. 



 11

The macrocantilever detectors were sensitive transducers at the time of 

their use, but they were limited by several difficulties.  One problem that existed 

with the macrocantilever sensor was that the existing means of measuring the 

cantilever deflection could not provide the desired accuracy or sensitivity needed 

for the macrocantilever to be a viable sensor.  Another inherent problem with the 

macrocantilever sensors was their large size, 100 mm long and 125 μm thick[13], 

which made them vulnerable to external vibrations.  Researchers believed that 

smaller micrometer sized cantilevers would be able to measure tiny surface stress 

changes[14-18], but the microfabrication technology did not exist to produce such 

a cantilever.  The microfabrication technology needed to produce micrometer 

sized cantilevers was ushered in by the emergence of atomic force microscopy 

(AFM).   

In AFM a flexible force-sensing cantilever is scanned over a surface in a 

raster pattern.  The force acting between the cantilever and the sample surface 

causes deflection of the cantilever.  Deflection of the cantilever is measured by a 

laser reflecting off the tip of the cantilever to a position sensitive detector 

(PSD)[19].  As the cantilever tip is deflected, a piezoelectric device moves the 

sample in x, y, and z directions to maintain a constant force between the tip and 

the sample.  The movement of the piezoelectric device allows for topographic 

mapping of the sample surface.  With AFM, displacements as small as 10-5 nm 

can be detected resulting from forces as small as 10-18 N[20] in extreme cases. 

Routinely, displacements as small as 10-3 can be measured resulting from forces 

on the order of a few pN.  The invention of AFM in 1986[20] necessitated the 
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mass production of cantilevers on the micrometer scale, which motivated many 

advancements in microfabrication techniques.   

Some researchers took advantage of the advancements in microfabrication 

techniques and began using conventional microfabricated AFM tips as 

transducers[21-27].  Microfabrication of MCs is made possible through one of 

two micromachining techniques, either bulk micromachining or surface 

micromachining[13].  In bulk micromachining, removal of a large portion of the 

substrate occurs.  Bulk micromachining is used to produce three dimensional 

suspended structures.  Surface micromachining allows for much more of the 

original substrate to remain intact.  From the original substrate a device is formed 

through deposition and etching processes.  The most preferred substrate for 

microfabrication of MCs is single crystal silicon.  A common microfabrication 

process for MCs begins with deposition of a sacrificial layer on a prepatterned 

substrate (Figure 4).  A structural silicon nitride or polysilicon material layer is 

then deposited using low pressure chemical vapor deposition (LPCVD) or 

plasma-enhanced chemical vapor deposition (PECVD) on top of the sacrificial 

layer.  The specific cantilever shapes can then be defined by patterning the silicon 

nitride or polysilicon structural layer using photolithography followed by reactive 

ion etching (REI).  The silicon substrate is then etched away to produce free 

standing cantilevers on the micrometer scale.  AFM ushered in micromachining 

technology which enabled mass production of micrometer sized cantilevers.  

Microfabrication technologies had now provided a gateway for theoretical MC 

calculations of years past to be tested empirically.  The MC was no longer theory,  
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Figure 4 Microfabrication of MCs 
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but a physical micromachined microtransducer and researchers began to test the 

tiny structure for its chemical sensing ability. 

1.3.2 Static Mode 
 
 As a chemical sensor MCs respond to chemical stimuli by either of two 

physical means.  MCs can undergo a static deformation or a change in resonance 

frequency due to environmental changes.  

 In the static deformation, also know as static mode operation, MCs are 

differentially coated with responsive phases (RPs).  One surface of the MC is 

coated with a RP possessing an affinity for the analyte of interest.  The opposing 

surface of the MC is passivated relative to the coated side, based on the fact that it 

remains uncoated.  Since the 1960s it has been known that adsorption of 

chemicals on an atomically pure single crystal will induce significant surface 

stress changes.  Based on the Shuttleworth equation[28], the surface stress can be 

related to surface free energy (equation 4) 

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=
ε
γγσ    (4) 

where σ is the surface stress, γ is the surface free energy, ϑγ is the relative change 

in surface free energy and ∂ ε is defined as the relative change in surface area.  In 

many cases, the contribution from the surface strain term can be neglected and the 

surface stress change is approximately equal to the free energy change.  

Micrometer scale cantilevers can detect surface stress changes in the low mN/m 

range[13]. 
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 Three general models have been developed for understanding how 

chemical stimuli impart surface stress changes to a MC coated with a RP.  The 

first model is applicable when the interactions between the chemical stimuli and 

the MC are localized to the cantilever surface.  The model is relevant when the RP 

is only a monolayer.  The chemical stimuli may physisorb through van der Waals 

forces to the surface monolayer or the chemical stimuli can chemisorb through 

chemical bonding to the surface monolayer.  Physisorption can polarize the 

surface monolayer creating induced dipoles.  The energy related to physisorption 

is very small, less than 0.1 eV, resulting in small surface stress changes.  The 

process of chemisorption is a higher energy interaction, greater than 0.3 eV, 

causing larger surface stress changes.  The surface stress can be attributed to the 

Gibbs free energy of the adsorption process.  Therefore, spontaneous adsorption 

processes will occur when there is an excess of interfacial free energy, which 

typically results in the reduction of interfacial stress.  This surface stress change is 

known as compressive because the possibility of the return of the surface to its 

original compressed state.  Therefore, the largest static deformations will occur in 

cantilevers with high initial surface free energies (Figure 5).  These deformations 

can accurately be predicted by using the relationships derived by Stoney[29].  

With an understanding of the radius of curvature and the length of the cantilever, 

the bending of the MC (tip deflection, zmax) can be characterized and 

approximated by equation 5 

2

max 2

3 (1 )
Et

l vz −
= Δσ   (5) 



 16

 

 

 

 

 

Figure 5 Static Mode Bending of MC 
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where v and E are, respectively, the Poisson ratio and Young’s modulus for the 

cantilever, t is the thickness of the MC, l is the cantilever effective length, and Δσ  

is  analyte-induced differential surface stress (Δσactive (i.e., RP) side – Δσpassive side). 

 The second model developed for static deformations of cantilevers is 

related to MCs having RPs thicker than a single monolayer such as a polymer 

coating ranging in thickness from 100 to 500 nm.  The polymer RP coating is 

permeable to the analyte of interest.  The interaction, therefore, is no longer 

limited to surface phenomena.  As the analyte penetrates the thick RP, forces 

including dispersion, electrostatic, steric, osmotic, and solvation can be altered by 

the invading analyte molecules[30].  The alteration of these forces in the polymer 

coating can cause stress changes which are imparted to the cantilever causing 

deformations.  The in-plane component of the RP stress can be multiplied by the 

coating thickness to give an apparent surface stress change, which can be applied 

to Stoney’s model.   

 The third model developed for static deformations of cantilevers can be 

applied to cantilevers with nanostructured surfaces.  These irregular amorphous 

nanostructured surfaces on cantilevers are desirable because it has been known for 

some time that disordered amorphous films have high intrinsic stresses[17].  In 

nanostructured RPs, analyte-induced stresses combine bulk, surface, and 

intersurface mechanisms resulting in large stress changes and large amounts of 

cantilever deformation.  Recent studies have shown that nanostructured surfaces 

can enhance the cantilever response by two orders of magnitude[31, 32].  The 

static deformation of the nanostructured cantilever cannot be predicted with 
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previous models, but estimates of the mechanical energy produced by a cantilever 

can be calculated.  The product of the energy associated with the binding site-

analyte interaction and the number of interactions can be used to estimate the 

mechanical energy. 

1.3.3 Dynamic Mode 
 
 Not only can chemical stimuli cause static deformations in a cantilever, 

but mass loading of an analyte onto the surface of a cantilever can impart a 

resonance frequency change.  The very small size and mass of MCs allows them 

to be operated in resonant mode with or without external excitation.  For a 

resonating cantilever, Hook’s law can be applied to a rectangular leaf spring with 

an effective suspended mass m0 and a spring constant k.  In the absence of 

damping the fundamental resonance frequency (f0) of the cantilever can be 

approximated as equation 6[33].   

0
0 2

1
m
kf

π
=            (6) 

To more accurately calculate cantilever resonance frequencies the dissipation of 

the resonator energy must be taken into account.  This is accomplished by 

introducing a Q factor as in equation 7[33, 34].   

Q
Q

m
kf Q

12

2

1

02
3,0

−
=

π
          (7) 

The Q factor compares the frequency at which the cantilever oscillates to the rate 

at which it dissipates energy.  The Q factor supplies the experimenter with an idea 

of mechanical friction.  By invoking the Q factor, the change in the resonance 
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frequency can then be related several mechanisms; adsorbate-induced mass-

loading, chemically induced changes in the cantilever stiffness, and mechanical 

damping by the viscous medium.   

1.3.4 Readout Methods 
 
 Despite the limited number of operating modes, static and dynamic, there 

are many methods to make real-time measurements of cantilever deformations or 

resonance frequency changes.  The readout methods include optical, piezoelectric, 

piezoresistive, capacitance, and electron tunneling schemes. 

 In the first optical readout method, known as the optical beam deflection, a 

laser is focused on the tip of the cantilever (Figure 6).  The laser reflects from the 

tip of the cantilever to a PSD, just as in AFM.  As cantilever deformation occurs, 

the position of the laser on the PSD changes.  This optical arrangement allows for 

very small changes in cantilever tip deflection to be measured, up to 10-14 m 

displacements have been reported[35] in the most stringent of experimental 

setups.  However, diplacements as small as of 10-10 m are routinely measured.  

This readout scheme provides the advantages having no electrical connections to 

the cantilever, linear response, simplicity and reliability.  However, if changes in 

the optical properties of the medium surrounding the cantilever occur, 

interferences with output can be seen. 

 The second optical readout method included interferometric 

measurements.  A single visible laser source illuminates an entire array of 

cantilevers.  The reflected light is either interferometrically coupled with a 

reference beam and detected by a charge-coupled device (CCD) or directly  
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Figure 6 Optical Detection Scheme 
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reflected onto the CCD.  Interferometric detection readout schemes are important 

because they can be used to monitor deflections of large two-dimensional 

cantilever arrays. 

 Piezoresistive readout schemes are based on the phenomenon that as a 

stress is applied to a material, the bulk resistivity of that material will change.  A 

material that exhibits strong piezoresistive effects is boron doped single crystal 

silicon, the material from which cantilevers are generally fabricated[36, 37]. 

Therefore, when analyte-induced stress manifests itself in cantilevers in the form 

of static deformations or changes in resonance frequency, the bulk resistivity of 

the cantilever changes.  A portion of the silicon cantilever is doped with a boron 

channel.  The cantilever is included with a dc-biased Wheatstone bridge having 

resistors of identical initial resistance.  Changes in resistance occur as the 

cantilever deforms in response to external stimuli.  The disadvantage of the 

technique is that it requires current to flow in the cantilever resulting in heating of 

the cantilever.  If changes in the surrounding environment occur, heat will be 

dissipated at a different rate causing bending in the cantilever unrelated to 

chemical stimuli. 

 Piezoelectric readout techniques are based on the piezoelectric effect, in 

which transient charges are induced in the piezoelectric layer when it is 

deformed[38].  Therefore, a piezoelectric material must be deposited on the 

cantilever before it can be monitored by piezoelectric means.  The disadvantage 

of this readout scheme is that it requires electrical connects directly to the MC.  

Additionally, in order to obtain large output signals the thickness of the 
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piezoelectric film must be increased.  However, it is evident, when looking at the 

Stoney equation that as the total thickness of the cantilever increases, the tip 

deflection decreases.  The increase in sensor thickness will ultimately decrease the 

sensitivity of the MC. 

 Another means of measuring MC responses to chemical stimuli is through 

capacitance.  This detection scheme is based on measuring the capacitance 

between a conductor on the tip of the cantilever and a conductor on the surface of 

a substrate separated from the cantilever by a small gap[39-41].  As cantilever 

deformations occur, the capacitance between the two conductors changes.  This 

capacitance change can be related to the change in distance.  If the dielectric 

constant of the medium changes then accurate measurement of cantilever 

deformation becomes difficult.  The major advantage for the capacitance 

detection scheme is that it can be envisioned as a means to provide a readout 

scheme for nanocantilevers.   

 The final readout scheme to be discussed herein is that of electron 

tunneling, which has been used to measure tip deflection in AFM[42].  In electron 

tunneling, a conducting tip and the cantilever are separated by a subnanometer 

gap.  A bias voltage is applied between the conducting tip and cantilever resulting 

in a flow of electrons.  The tunneling current is sensitive to the gap distance.  

Therefore, any cantilever deformation can be detected by this technique.  Using 

this electron tunneling technique, cantilever displacements as small as 10-4 nm can 

be detected[43]. 



 23

 Over the past 20 years there has been a steady growth in the use and 

application of MC sensors.  As noted in this chapter, the fundamental theory, 

modes of operation and sensor readout schemes have been explored.  Our 

previous research in the area of MC sensors focused on enhancing the sensitivity.  

Enhancements in sensitivity were accomplished by using various techniques to 

increase the surface area of the MC sensor.  An increase in surface area provided 

more surface sites for analyte to interact thus an increase in sensitivity.  The most 

successful approach to increasing MC surface area was a process known as 

dealloying, which created a gold nanostructured surface on the MC.  The gold 

nanostructured surface increased the surface area of the MC sensor by 20 times.  

Enhancements in response to analytes with the nanostructured surface were as 

much as 10 times larger versus the smooth gold coated MC.   

The current research presented in the following chapters will focus on 

enhancing the selectivity of the MC sensor.  Attempts at enhancing the selectivity 

of the MC sensor were made with liquid and gas phase analytes.  The main 

strategy used to increase the selectivity of the MC was to use the sensor in an 

array format.  The microcantilever array sensor (MCA) allows for coating of each 

cantilever in the array with a different RP.  Each phase responds differently to 

each analyte injected and a MCA gives a unique response signature for each 

analyte.  Pattern recognition algorithms can then be applied to these unique 

analyte signatures to identify the analyte.  To further enhance the selectivity of 

this strategy chromatographic techniques were applied to mixtures of analytes.  

The mixtures were separated before introduction into the MCA flow cell.  The 
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chromatographic coupling to MCAs was invoked to provide an additional 

dimension of selectivity of to the system.  These attempts at enhancing the 

selectivity of the MC sensor will be presented in the following chapters.      
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CHAPTER 2: CHARACTERIZATION OF LIGAND-
FUNCTIONALIZED MICROCANTILEVERS FOR METAL 

ION SENSING 
 

 Chapter 2 is an adaptation of a research article Anal. Chem. 2005, 77, (20), 

6601-6608.  The article demonstrated that thiolated ligand self-assembled 

monolayers could be formed on cantilevers that could subsequently be used to 

selectively detect metal ions. 

 
2.1 INTRODUCTION 
 

The continued release of metal contaminants into the natural environment 

from    different sources has prompted the development of practical detection 

schemes for metal ions present in different sample matrices.  Heavy metals are 

highly toxic for biological organisms even at trace amounts. Moreover, as metals 

are non-degradable they tend to bioaccumulate as they move along the food chain.  

Traditional methods for metal ion detection include liquid or gas chromatography 

(GC)[44-46], atomic absorption[47], flow-injection systems[48], 

electrochemistry[49, 50], fluorescent sensors,[51] inhibition based enzymatic 

assays,[52] solid phase extraction[53], and immunoassay[54].  These methods, 

however, are either expensive or not useful when there is a need to detect metals 

at low concentrations.    

In recent years, microfabricated cantilevers (MCs) have been 

demonstrated   as platforms for novel physical, chemical, and biological 

sensing[55-68].  Due in part to their diminutive size, MCs typically offer 

approximately two orders of magnitude better sensitivity than other mass-based 
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sensors such as QCMs, FPW oscillators, and SAW devices[69].  In addition, MCs 

can be relatively low in cost, integrated with micromechanical components 

including on-chip electronic circuitry, and used in an array format.  The MC array 

format can yield a good degree of selectivity and provide multiple analyte 

measurements when used in conjunction with multiple chemically selective 

coatings[58, 70-74]. 

 The principles of MC operation can be quite simple.  Intermolecular forces 

arising from analyte adsorption on surfaces or absorption into surface-

immobilized thin films are known to induce surface stresses[69].  Static 

mechanical bending of the cantilever can occur if surface stresses on opposite 

sides of the cantilever are modulated by different degrees.  Differential stress 

occurs when a molecular (or ionic) recognition phase (MRP) is immobilized on 

one side of the cantilever while the other side of the MC remains largely passive 

toward the target analyte(s). The cantilever response (displacement of the MC tip, 

zmax) resulting from this difference in surface stress can be approximated by 

Stoney’s Equation[29, 75]  

2

max 2

3 (1 )
Et

l vz −
= Δσ   (5) 

where v and E are, respectively, the Poisson ratio and Young’s modulus for the 

cantilever, t is the thickness of the MC, l is the cantilever effective length, and Δσ  

is  analyte-induced differential surface stress (Δσactive side – Δσpassive side).  Our   

recent   studies[60, 66, 76-78]   have   focused   on   the  design  of    MC sensors  

in which weak chemical or biochemical stimuli can be converted into mechanical 
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responses with very high efficiency.  We have demonstrated that nanostructuring 

of the active side of the MCs can magnify analyte-induced responses by one or 

more orders of magnitude in both gaseous and liquid environments[60, 76, 77].  

In addition to the analytical significance of increased responses with 

functionalized nanostructured MCs, complications arising from analyte 

interactions at non-treated cantilever surfaces are rendered negligible using this 

approach. 

Despite their high sensitivity, unmodified MCs do not exhibit tunable 

chemical selectivity.  In MC sensing, two approaches have been widely used to 

functionalize the MC surface with MRPs and impart selectivity. Thin films of 

MRPs have been used extensively wherein the analyte – MRP interaction is an 

absorption process.  Many polymeric materials and macrocycle receptors have 

been used in this manner[58, 74, 77-80].  Although both gas phase and liquid 

phase sensing is possible, the stability of the phase in liquid environments can be 

an issue[60].  Conversely, MRPs as self-assembled monolayers (SAMs) have 

been proven successful for the detection of analytes in water[81-83].  The SAM 

molecule contains a functional group (e.g., a thiol moiety) to chemically attach it 

to the MC surface, which serves to provide stability.  Tailoring of the molecular 

recognition terminal of SAM-forming molecules through the use of mono- and bi-

functional molecules has led to many interesting possibilities for engineering the 

response characteristics of MCs[60, 81-83].  For example, Thundat and coworkers 

have demonstrated the use of SAMs of thiolated chelates on MCs for sensing of 

different metal ions such as cesium, calcium, and chromium[81-83].  They have 
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also demonstrated a protein functionalized MC sensor which exhibited large 

responses to multiple metal ions[84].  However, in these cases, the strong metal 

binding characteristics of the chelates or proteins tends to produce irreversible 

responses; e.g., even the use of EDTA was not enough to regenerate the protein 

functionalized MC[84].   

 In  this  chapter  we  report  the use  of  single  and  binary mixtures of 

different thiolated ligands as SAMs on nanostructured MCs for the selective and 

sensitive sensing of multiple metal ions in aqueous solution. To our knowledge, 

this is the first report of the development of SAM-functionalized, nanostructured 

MC using different mono-dentated ligands for detection of monovalent, divalent, 

and trivalent metal ions.  Cantilever tip deflections are monitored by optical beam 

bending technique commonly employed in AFM.  Of the plethora of possible 

simple ligands that are expected to yield different affinities for metals, the ones 

used in our studies have hydroxyl, carboxyl, or amine functionalities, as well as 

different alkyl chain lengths separating the thiol and ligand functionalities.  While 

it is likely that multiple ligands bind to a single metal ion, it is unlikely that the 

full coordination sphere of the metal is satisfied with our approach.  Thus, overall 

binding strengths are less than that expected with binding to chelating ligands.  

This gives rise to reversible responses that are so important in true sensing 

applications.   Moreover, we compensate for the expected lower responses with 

smaller binding strengths by using the more responsive nanostructured MC 

surfaces; good sensitivities are observed for several tested metal ions.  Although 

we mentioned the potential use of differentially-functionalized MC arrays, in this 
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initial study we chemically treated all the cantilevers the same and simply 

recorded the response of a single randomly chosen MC within an array.                                       

2.2 EXPERIMENTAL 
 

Experiments were performed using commercially available silicon arrays 

(five cantilevers per array) of MCs coated with aluminum and having dimensions 

400 µm length, 100 µm width, and approximately 1 µm thickness (Mikro Masch 

Co., Sunnyvale, CA). Chromium, gold, and silver metals deposited on the MCs 

were obtained from Kurt J. Lesker, Gatewest, and Alfa Aesar Co., respectively, at 

99.9% purity. Different thiolated ligands used for functionalization are listed in 

Table 1. All the metal-chloride, -nitrate and -acetate salts, the salts employed for 

the preparation of buffer solutions, the solvent ethanol, and all other reagents were 

purchased from Sigma or Fisher at highest available purity and used as received. 

Water used to prepare solutions was obtained from a Barnstead E-Pure water 

filtration system. 

 For measurements using cantilevers coated with aluminum, the cantilevers 

were cleaned in a piranha bath (75% H2SO4, 25% H2O2) for 30 minutes [Caution: 

piranha solution reacts violently with organics] after removal of thin aluminum 

layer by immersing them in aqua regia (75% HCl, 25% HNO3) for 3 minutes 

[Caution: aqua regia is very corrosive]. The cantilevers were then thoroughly 

rinsed in deionized water. The process of creating the nanostructured MCs having 

a dealloyed surface is described in detail elsewhere[77]. In order to create gold 

nanostructured surface on one side of the cantilevers, a composite metal coating 

was created using physical vapor deposition (PVD) in vacuum from tungsten  
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Table 1 List of Thiolated Ligands 
 

Acronyms Name of the thiolated ligand 

AET 2-Aminoethanethiol 

MPA 3-Mercaptopropionic acid   

MUA 11-Mercaptoundecanoic acid 

MP 3-Mercaptopropanol 

MUD 11-Mercaptoundecanol 

Cysteine Cysteine 
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boats (Cooke Vacuum Products, model CE 301, South Norwalk, CT).  

Evaporation of a 5 nm chromium adhesion layer was followed by evaporation of a 

15 nm gold layer and, without stopping the evaporation of gold, by co-

evaporation of gold and silver until a composite Au/Ag film of ~50 nm thickness 

was formed.  Both the deposition rate and resulting coating thickness were 

monitored using a QCM. Silver was subsequently etched out of the composite 

film by placing the cantilevers in an aqueous solution of 0.2% w/v HAuCl4 for 2-

3 minutes. Cantilevers were rinsed with copious amounts of water after etching. 

MCs with smooth gold surfaces were prepared by depositing 30 nm gold onto 5 

nm chromium adhesion layer. 

The nanostructured and smooth gold coated cantilevers used in our studies 

were chemically modified with SAMs of single and binary mixtures of bi-

functional n-alkyl compounds possessing a thiol group for binding to the metallic 

MC surface on one end and a mono-dentated ligand group for the complexation of 

sample metal ions on the opposing end.  In case of MC functionalization with 

single thiolated ligands, this modification was performed by immersion of the 

nanostructured MC into 10 mL solutions of 1 mM corresponding reagent in 

ethanol for up to18 hrs. When the MCs were functionalized with binary mixtures 

of ligands, similar concentrations were mixed in 1:1 proportions by volume and 

then nanostructured MCs were dipped into 10 mL of ethanolic solution of that 

binary mixtures for up to 18 hrs. Upon removal from the ethanolic solution, the 

MCs were initially rinsed with ethanol and then copiously rinsed with water and 

stored in pH 5 acetate buffer (AB) at room temperature.  
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The  bending  responses  of   the  MCs  were  monitored  using   an optical 

beam bending technique as previously described (see chapter 1)[60, 66].  The 

apparatus included a 5 mW diode laser (Coherent Laser Corp., Auburn, CA) 

operating at 632 nm, a focusing system, and an in-house-built position-sensitive 

optical detector. The amplified output signal of the detector was displayed and 

recorded with a multichannel digital recorder (Stanford Research Systems, 

Sunnyvale, CA). The signals in this work are reported in voltage output of the 

detector. Data were collected at 1 Hz and then running averaged over 32 data 

points to generate the figures presented herein. This smoothing did not alter the 

shape of the true response curves. The cantilever was mounted inside a 150 µL 

volume Teflon flow cell that was imaged with a Watec CCD camera (Edmund 

Industrial Optics, Barrington, NJ) equipped with a microscope zoom lens. Analyte 

solutions were delivered to the flow cell via a system of vessels connected to 

three-way valves allowing for switching between different solutions (AB and 

samples) with minimal disturbances of the flow. The flow rate was adjusted to 0.2 

mL/min. The entire apparatus was placed on a vibration isolation table (Newport 

Corp., RS2000) located in a thermally controlled environment. Measurement of 

pH was utilized an Orion SA 520 pH meter (Thermo Orion, Beverly, MA). 

All metal-chloride, -nitrate, and -acetate solutions were prepared in pH 5 

AB which was also used as a background buffer solution. Chemically modified 

cantilevers were allowed to equilibrate in the background solution until a stable 

baseline was achieved before any measurements.  For our purposes, tensile 

(compression of the nanostructured surface) and compressive (expansion of the 
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nanostructured surface) responses involve bending away from and bending 

toward the bare silicon side of the MC, respectively. 

2.3 RESULTS AND DISCUSSION 
 

Figure 7A is a depiction of the predicted surface structure of the SAM 

modified, nanostructured MC where SAM is represented by a mixture of different 

thiolated, mono-dentated ligands with variable chain length. Upon exposure to 

metal ion solutions, a limited number of the ligands bound to the functionalized 

MC are accessible to the metal ion of interest.  Thus, the figure demonstrates that 

simple mono-dentated ligands will not satisfy the full coordination sphere of the 

metal, which gives rise to modest binding constants and reversible responses.  

 Different models have been proposed to describe the analyte induced 

changes in apparent surface stress (Δσ)[85].  In the case of charged cantilever 

surfaces, modified with ionizable ligand phases and interacting with aqueous 

metal ion electrolyte solutions, it is expected that changes in Columbic forces 

contribute significantly to MC response characteristics.  In comparing smooth 

gold to dealloyed MCs we have often noted analyte induced responses that differ 

in direction, compressive (expansion of the active surface) versus tensile 

(contraction of the active surface).  Based on observed responses, it appears that 

the smooth gold bares a negative charge (perhaps due to traces of gold oxides) 

while our fabricated dealloyed surface is positively charged (perhaps due to 

residual silver ions produced in the dealloying process).  With extended use and 

modification the charge situation can change.   Figure 7B depicts the effects of  
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Figure 7 (A) Schematic representation of the molecular structure of the SAM of 
mixture of thiolated ligands with variable chain length as ionic recognition phase 
for metal ions. (B) Depiction of the columbic based realization of changes in 
compressive or tensile surface stresses resulting in expansion or contraction, 
respectively, of the surface. 
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Columbic forces on response characteristics.  If changes in the local environment 

(e.g., injection of sample) cause the MC surface charge to diminish the surface 

will contract (tensile response), while increasing the charge, in either direction, 

will produce an expansion of the surface (compressive response).    

 While we did not perform the more demanding direct measurement of the 

double layer potential under varying local environments, we did conduct some 

independent experiments using our versions of MC surfaces to validate assertions 

regarding charge effects.  Smooth and dealloyed gold surface MCs (no ligands) 

were exposed to 0.1 and 1.0 mM solutions of metal electrolyte in the presence of 

an excess of AB. The electrolytes were cobalt-acetate to study interactions of the 

metal ion with the surfaces, with the same counter anion as the buffer, and 

sodium-chloride to study anion effects, with the same counter cation as the buffer. 

With the doubly charged Co2+ metal, the dealloyed kinetic response rise was +4.4 

and +11.8 mV/second for exposure to the dilute and concentrated solutions, 

respectively.  It appears that a weak interaction between the cobalt cation and the 

gold surface occurs. The positive slope indicates a compressive response, which is 

consistent with an increasing positive surface charge.  Conversely, when the 

expected negatively charged smooth gold surface MC was exposed to the dilute 

cobalt solution, the response was tensile (-5.0 mV/second) indicating a move 

toward zero charge.  However the more concentrated cobalt solution produced a 

compressive +4.5 mV/second response rise following a very brief negative 

excursion as the Co2+ solution just reached the MC.  This is consistent with the 

surface charge moving through the zero charge point.  For the interaction with Cl-, 
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the smooth surface produced +0.40 and +1.4 mV/second compressive responses 

for the dilute and concentrated solutions, respectively.  This is consistent with 

anion interactions with a negative surface. The responses were -0.40 (tensile) and 

+ 0.30 (compressive) mV/second for the dealloyed surface, consistent with 

moving past the zero point charge for a surface that is initially positive in charge. 

 In another experiment, both the dealloyed and smooth gold surface MCs 

were exposed to dilute aqueous solution of MPA (1mM) in pH 5 AB, one of the 

ligands used in this work to form SAMs where the same buffer was the 

background solution. On exposure to this negatively charged reagent, negative 

smooth gold surface showed a rapid compressive response while the positive 

dealloyed surface experience a slower tensile bending. These results are again 

consistent with increasing and decreasing surface charges, respectively, as 

represented in Figure 7B.  

In preliminary experiments, attempts were made to determine if SAMs (18 

hrs. functionalization time to form the monolayer) comprised of mono-dentate 

ligands can actual detect metal ions in solution. Figure 8A shows the response 

behavior of a 3-Mercaptopropanol (MP) functionalized MC upon exposure to 1 

mM Co and Cs metal ions in pH 5 AB solutions. An exposure time of 3 minutes 

produced a compressive response in the MP coated MC, which was reversed 

when the metal ion solution was replaced by background buffer solution. It is 

reasonable to expect that the weak complexation of the positive metal ions via the 

neutral MP ligand will cause an increasing positive surface charge and subsequent 

charge repulsion by metal ions produce the observed compressive responses.  It  
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Figure 8 Time trace of SAM coated MC on exposure to Cs+, Co2+ and Fe3+ 
metal ions in AB solution (pH 5), first arrow indicates injection of metal ions and 
the second one indicates the return to background AB (pH 5).  (A) Response of 
MP coated MC and (B) comparison of bending responses of AET functionalized 
nanostructured (dealloyed) MC to similarly functionalized smooth gold MC. 
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should be mentioned, however, that unlike the experiments involving acetate 

counter ions described above, a couple of complications exist in this experiment.  

While freshly prepared dealloyed surfaces appear to possess a positive charge, the 

functionalized surface may not.  Secondly, a different counter ion (Cl-) has been 

brought into the system.  

SAMs of 2-Aminoethanethiol (AET) were formed on both 30 nm smooth 

gold and dealloyed MCs. Figure 8B shows the responses of the two different MC 

surfaces upon exposure to 0.1mM FeCl3 in AB solution. Though the kinetics of 

bending of the asymmetrically nanostructured MC was much faster than that of 

the cantilever with smooth surface, both the MCs showed reversible compressive 

responses to the metal ion.  The compressive response of the AET coated 

nanostructured MC is nearly an order of magnitude larger than that of the smooth 

one. This enhancement in chemimechanical response of the dealloyed surface is 

also observed for other thiol SAMs as well as for other metal ions.  In fact, 

enhancements are consistently observed in MC bending upon dealloying of 

previously smooth MC surfaces reaching orders of magnitude and sometimes 

exceeding the increase in surface area produced by the nanostructuring[60, 77].  

Microscopic investigations of the surfaces that are nanostructured by the 

dealloying process reveal it’s colloid like morphology[77].  Consistent with our 

MC observations, theoretical and experimental studies have shown that stresses 

caused by inter- and intra-molecular interactions in surface-confined colloids may 

exceed that on smooth surfaces by orders of magnitude[77, 86].  
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In another series of experiments, dealloyed MCs were functionalized with 

single short chain thiolated ligands (MPA and MP) and binary mixtures of either 

short and long chain ligands with the same functionality at the end (MPA-MUA, 

MP-MUD) or ligands with different functionalities at the other end (MPA-MP, 

AET-MPA).  Upon exposure to 0.1mM CoCl2 in buffer solution, all of the 

differently functionalized MCs showed reversible compressive responses.  The 

response magnitude of the singularly functionalized MCs is 2-4 times larger than 

the dual functionalized MCs irrespective of similar or different functionalities 

(Figure 9A and 9B).  The smaller response with the dual ligand systems was 

somewhat surprising as we felt the long and short chain system would provide 

greater geometric flexibility and the dual functional system would permit greater 

versatility to complex the metal ion.  Nevertheless, Figures 8 and 9, demonstrate 

that the shapes and the magnitudes of the response profiles are characteristics of 

metal ions and ligands.  This fact could have implications for selective metal ion 

recognition in an array format.  

In addition to the impact of ligand type and the nanostructuring of the MC, 

optimization of the sensor’s response is influenced by the uniformity and the 

density of the SAM and the pH of the working buffer.  To optimize the SAM to 

obtain the highest sensitivity towards different metal ions, both the immersion 

time and the concentration of the ligand solution (single and dual ligand cases) 

were studied.  Also, pH of the working buffer solution affects protonation of the 

functional group at the end of the thiol receptor molecule impacting sensor  
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Figure 9 Comparison of the bending responses of the single and dual thiolated 
ligand functionalized MCs as a function of time, t, upon exposure to 0.1 mM 
CoCl2 in buffer solution (pH 5), first arrow indicates injection of metal ion and 
the second one indicates the return to background buffer (pH 5). 
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performance. In the present work, different mono-dentate single and binary 

mixtures of simple thiolated ligands were used for detection of monovalent, 

divalent, and trivalent metal ions.  Optimization of different SAMs with respect to 

immersion time, concentration, and pH was performed using CoCl2 as the analyte.  

Figure 10A shows the effect of immersion time in ligand solutions on the 

response magnitude of differently functionalized MCs with single mono-dentate 

ligands when exposed to 0.1mM CoCl2 in AB solutions. For immersion time 

experiments, dealloyed MCs were dipped into 1mM thiol solution in ethanol from 

0.5 hr to 18 hrs. Comparison of the different immersion times for SAM formation 

showed that 2 hrs. functionalization yielded the maximum response for all the 

ligands.  Although it may have formed a denser monolayer, longer incubation 

times did not result in an optimized MC surface for metal ion sensing.  Note that 

some of our other experiments were performed prior to obtaining the data in 

Figure 10A and, hence, using systems that were not optimized in terms of SAM-

formation time.  The effect of immersion time when functionalizing the MC with 

1:1 binary mixtures of short and long chain ligands with the same functionality 

was also studied.  Substantially different results were observed when comparing 

the dual system to the singularly functionalized systems (compare Figures 9A & 

B).  The required extended incubation time for efficient functionalization of 

surfaces with mixtures of thiolated compounds has been observed before[87].  

The increased formation time (18 hours yield the best responses) may be due to 

the rearrangement of two different chain length thiols to the proper orientation for 

binding to the gold surface.   The use of a lower concentration of ligand solution  
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Figure 10 Effect of immersion time on response (bending) to 0.1mM CoCl2 for 
functionalization with single (A) thiolated ligand and (B) dual thiolated ligand 
systems. In (C) the effect of pH on the bending responses of SAM - MCs are 
shown when exposed to 0.1mM Co2+ solutions. 
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for functionalization also resulted in a 3-fold lower response for 0.1mM CoCl2 at 

the 18 hour incubation time (Figure 10B). 

The impact of pH on the sensor response is demonstrated in Figure 10C 

for the test CoCl2 solution on the MPA and MUA functionalized MC.  As the pH 

is lower from 6 to 3 and the acidic group neutralized, both conditional 

complexation constants and ion exchange capacity are expected to decrease.  

Nevertheless, the response in terms of bending increases with lowering of pH.  It 

is conceivable that rearrangement of the SAM on the dealloyed surface as the 

MPA and MUA are neutralized influences the ability to complex the metal.  Also 

it is possible that even smaller binding can produce a greater surface stress 

depending on the surface charge changes that occur as depicted by Figure 7B.   It 

is appropriate to note here that the static bending of MC, unlike traditional mass 

sensing transducers, is an apparent surface stress phenomenon that is only loosely 

related to the mass loading of the sensing surface with analyte. 

Metal ion recognition using differently functionalized MCs is based upon 

selective binding of ions with specific coordination and geometric requirements to 

the ligand molecules on the sensing surface. Thus designing and varying binding 

sites in the SAM can enhance the selectivity of the sensor.  Figure 11 shows 

response selectivity for metal ion recognition with variation of functionality and 

chain length of the thiolated ligands in combination with the variation of counter 

anion of metal salt solutions.  All responses are based on 3 minute exposures to a 

single moderate concentration (0.1mM) of the salt solutions in buffer.  The 

selectivity factors for the various metal ions for a particular ligand can be  
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Figure 11 Response (maximum bending) selectivity for metal ion detection (A) 
with different thiol functionalized MC, (B) with different counter anion, and (C) 
with different chain length thiol using 0.1 mM metal ion solutions in buffer. 
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determined from the ratio of the response magnitudes of two similarly charged 

metal ions.  As stated above the response ratios are not strictly a matter of ionic 

recognition.  Moreover, the response ratios could change with concentration.  

Figure 11A demonstrates the selectivity pattern for differently functionalized 

MCs for six different metal ions. Trivalent metal ions are more selectively sensed 

relative to each other than the divalent and monovalent metal cations, a trend 

common to each ligand.  This trend  has also been observed by Zugle et al. in the 

electrochemical detection of metal ions using ion-channel sensor based on a SAM 

of thioctic acid[87].  The MP functionalized MC showed no response selectivity 

for both the divalent and monovalent metal ions whereas the AET coated MC 

showed better selectivity in sensing monovalent metal cations than the divalent 

cations. Selectivity patterns for MPA and Cysteine functionalized MCs are 

opposite in sensing monovalent and divalent metal cations.   

To study the counter ion effect, an MPA  functionalized   MC  was  

exposed  to  chloride  and  nitrate  salts  of  four different metal  ions.  The greater 

response of chloride salts over the nitrate salts was demonstrated for all metal 

cations except Cr (Figure 11B).  This may indicate the simple chloride anion has 

less interference with the ligand and metal cation interaction than the larger, more 

complex nitrate ion.  Figure 11C shows the comparison of selectivity pattern for 

MCs functionalized with different chain lengths (MPA and MUA).  It is obvious 

in the figure that short chain functionalized MC shows better selectivity in sensing 

monovalent and trivalent metal ions than the divalent ions.  However, the long 

chain thiol coated MC shows better selectivity in sensing divalent cations. 
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Our prior work [60, 66, 69, 77, 78] shows that calibration plots are 

generally linear for two or more orders of magnitude while coefficients of 

variation for measurements using  a given MC-MRP are generally 10% or better.  

Repeated exposure of the same 0.1mM CoCl2 to the same single cantilever in the 

MC array functionalized with AET caused similar response amplitudes and 

bending rates indicating good single day measurement reproducibility with CV 

values of 9%.  Inter-day reproducibility studies using MUA functionalized MC 

showed the average value of bending response from day 2 was ~90% of the 

average value from day 1 when stored in AB at room temperature. Thus, 

reasonable reproducibility can be achieved with this sensor which, nevertheless, 

requires calibration on at least a daily basis. 

Linear dynamic range in MC applications can be limited by instrumental 

factors (e.g., an eventual non-linear relationship between tip displacement and 

PSD output) or fundamental relationships between the magnitude of stress 

modulation and analyte concentration.  As an example of the latter, in the current 

application it is reasonable to expect that as the SAM becomes saturated with 

metal ion both the absence of available ligands and charge repulsion will diminish 

the tendency for further metal complexation.  Figure 12 provides calibration plot 

of an AET functionalized MCs exposed to CoCl2 in AB.  Here the response 

magnitude of MCs was plotted against the concentration of CoCl2 during a 3 

minute exposure time.  The two inserts provide real response curves of AET 

functionalized MC (2 hrs. functionalization) on exposure to 1×10-7M CoCl2 with 

(32 data points averaging) and without  
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Figure 12 Concentration-based response curve of AET functionalized (18 hrs 
immersion time) MC. Inset: Real response curve of AET coated (2 hrs. 
functionalization) MC on exposure to 1×10-7M CoCl2 (A) with 32 data point 
averaging and (B) without smoothing. 
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smoothing.  Optimization of the SAM formation time has resulted in detection 

limits in the mid-nM range for this metal. 

Our studies demonstrate that SAMs of different thiolated ligands on 

nanostructured MCs can be applied for the detection of a wide variety of metal 

cations with good sensitivity and reversibility. The former characteristic is partly 

a result of the unique characteristics of nanostructured MCs while the latter is due 

to the relatively weak metal ion complexation by SAM of mono-dentated ligands. 

Moreover, our results indicate the shapes and magnitudes of response profiles are 

characteristics of metal ions and ligands.  Given the large number of possible 

mono-dentated ligands or combinations thereof, the achieved level of “ionic 

recognition contrast” (selectivity) bodes well for future efforts to generate 

spatially dense arrays of MCs with differing SAMs on the MCs and different 

metal ion response characteristics. We have acquired unique gas phase analyte 

signatures, and employed pattern recognition techniques to identify analytes based 

on the signatures in other MC array work[27, 88].  A key future effort will 

involve developing efficient and reproducible methods to differentially 

functionalized MC arrays with different thiolated recognition phases. 
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CHAPTER 3: DIFFERENTIALY LIGAND-FUNTIONALIZED 
MICROCANTILEVER ARRAYS FOR METAL ION 

IDENTIFICATION AND SENSING 
 

Chapter 3 sections 3.1-3.3 are an adaptation of a research article Anal. 

Chem. 2007, 79, 7062-7068.  The article demonstrated that arrays of thiolated 

ligand SAMs could be made and pattern recognition algorithms could be applied 

to metal ion response signatures to identify metal ions, greatly enhancing the 

selectivity of the system. 

 
3.1 INRODUCTION 
 

With ever-increasing industrial sprawl, the likelihood of release of 

pollutants into the environment increases.  Technologies for environmental 

monitoring must keep pace with expanding industrial demands.  One class of 

environmental pollutants that has garnered much attention recently is that of 

heavy metals.  Heavy metals are particularly dangerous to the entire ecosystem 

because not only are they toxic, but they possess the ability to bioaccumulate in 

organisms[89].  Bioaccumulation increases the heavy metal concentration present 

in an organism and therefore increases toxic effects.  Heavy metal poisoning has 

shown to cause medical difficulties with, but not limited to, nervous, 

gastrointestinal, and cardiovascular systems[89].  The health threat that heavy 

metal contamination can pose necessitates a technology able to detect and identify 

metal ions present in our environment.    

Currently, methods used to detect metal cations include liquid or gas phase 

chromatography[90-92], flow injection systems[93], electrochemistry[94, 95], 
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atomic absorption[96], solid-phase extraction[97], fluorescent sensors[98], 

inhibition-based enzymatic assays[99], and immunoassay[100].  However, many 

of the techniques are not amenable to environmental sensing because they are 

expensive and/or time consuming.  Newer, more adept technologies must be 

produced to confront the shortcomings of older technologies. 

MC sensors have emerged recently as sensing transducers that offer 

greater mass sensitivity than comparable sensors such as QCMs, FPW oscillators, 

and SAW devices[101] due in large part to their very small dimensions.  MCs 

have been utilized in many chemical and biochemical sensing applications[24, 31, 

32, 36, 102-111]. Not only do MCs demonstrate greater sensitivity, but they also 

are relatively low in cost, they can be used in an array format, and they can be 

integrated into on-chip electronic circuitry. 

When a target analyte interacts with an immobilized RP on one side of the 

MC, the interaction causes surface stress on that particular side of the MC[101].  

However, the opposite (blank) side of the MC is largely passive to the target 

analyte.  The interaction of the analyte with only one side of the MC creates a 

differential surface stress, which is relieved by the MC bending.  As stated 

previously, the bending of the MC (tip deflection, zmax) can be characterized and 

approximated by Stoney’s equation[29]  

 

2

max 2

3 (1 )
Et

l vz −
= Δσ   (5) 
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where v and E are, respectively, the Poisson ratio and Young’s modulus for the 

cantilever, t is the thickness of the MC, l is the cantilever effective length, and Δσ  

is  analyte-induced differential surface stress (Δσactive (i.e., RP) side – Δσpassive side). 

Recently, MCs have shown promise in the area of metal cation 

detection[112].  We demonstrated that by functionalizing gold nanostructured 

MCs with thiolated ligand SAMs, the MCs would respond to different metal 

cations present in a sample.  The ligand functionality interacted with the metal 

cations satisfying only a portion of the metal’s coordination sphere; this allows for 

reversible interactions.  The procedure used to nanostructure the surface prior to 

ligand functionalization results in good sensitivity despite the modest binding 

constants between the mono-dentated ligands and metal ions.  

In this chapter, prior work is expanded upon by using MCAs with multiple 

MCs differentially functionalizing with thiolated ligand SAMs, thereby creating 

for the first time a true MCA with ionic discrimination capabilities.  The 

underlying dealloyed nanostructured surface was created by codepositing Ag and 

Au and then etching the Ag from the composite layer[113].  Properties of this 

nanostructured dealloyed surface such as, thickness, gold to silver deposition 

ratio, and etching time were more thoroughly studied and optimized.  

Electrochemical and in-situ derivitization experiments were performed to 

demonstrate the impact that dealloyed layer changes would have on the thiolation 

of the surface.  Surface enhanced Raman spectroscopy (SERS) experiments were 

performed directly on MC surfaces to demonstrate that a capillary coating 

procedure could be used to successfully differentially functionalize each of the 
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diminutive cantilevers in an array with a different thiolated ligand.  Sensor 

performance experiments were then performed to demonstrate the sensitivity and 

selectivity (differentiating capabilities) of the MCA sensor.  Finally, pattern 

recognition algorithms were applied to the selectivity studies to classify metal 

ions in unknown samples.   

3.2 EXPERIMENTAL 
 

Silicon MCs with dimensions 400 μm length, 100 μm width and 1 μm 

thickness were commercially available (Mikro Masch Co., Sunnyvale, CA). The 

chromium, gold and silver metals (99.9% in purity) used in vapor deposition were 

obtained from Kurt J. Lesker, Gatewest, and Alfa Aesar Co., respectively. The 

flexible fused silica capillary was purchased from Polymicron Co. with 350 μm 

outer and 250 μm inner diameters. All the metal chloride analytes, salts for 

preparation of buffer solution, thiolated ligands (List below in Table 2), and the 4-

aminothiophenol (ATP) and o-Mercaptobenzoic acid (MBA) used in SERS 

experiments were obtained from either Sigma or Fisher at highest purity and used 

as received.  HF buffer containing ammonium fluoride and HF used for the 

capillary etching was purchased from Transene Company. Water used for 

preparation of solutions was obtained from a Barnstead E-Pure water filtration 

system. 

The creation of MCs having a silver, smooth gold or dealloyed surface 

was achieved by using a PVD approach. More details about the vapor deposition 

instrumentation and approach can be found elsewhere[112, 113].   
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Table 2 List of Thiolated Ligands 
 
Acronyms Name of Thiolated Ligand 
AET 2-aminoethanethiol 
MP 3-mercaptopropanol 
Cysteine Cysteine 
MPA 3-mercaptopropanoic acid 
MUA 11-mercaptoundecanoic acid 
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Dealloyed nanostructured surfaces with a composite 50/50 Au/Ag film with 

different thickness of 50 nm, 75 nm, 100 nm, 150 nm and 200 nm were deposited 

using the vapor deposition approach.  3-5 nm of Cr was deposited first then 15 nm 

of Au was deposited subsequent to the Cr.  Finally, the Ag/Au composite film was 

created by co-deposition of Ag and Au.  During the deposition, both the 

deposition rate and resulting coating thickness were monitored using a QCM.  To 

create nanostructured dealloyed surfaces from the Au/Ag film, the silver was 

etched out of the composite film by placing the cantilevers in an aqueous solution 

of 0.2% w/v HAuCl4 for about 2.5 min. Cantilevers were then rinsed with copious 

amounts of water after etching.  The Ag coated cantilevers for SERS experiments 

were also created through the vapor deposition approach by depositing 10 - 15 nm 

of Ag to create a SERS-active Ag-island film on the MC.  All Ag/Au, smooth Au 

or Ag-coated cantilevers used in our studies were chemically modified with 

SAMs of n-alkyl compounds with a thiol group for immobilization of the ligand 

to the metallic MC surface on one end and a mono-dentated ligand functionality 

for the complexation of sample metal ions on the opposing end.  

To differentially functionalize each cantilever with different thiolated 

ligands (Table 3), a capillary coating apparatus was designed.  The flexible 

capillaries were aligned and mounted horizontally in sequentially parallel 

channels with 500 μm spacing between them using a V-groove holder machined 

in-house (note: the MC pitch is 250 μm so alternate MCs are aligned with the  
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Table 3 Optimized concentrations of ligand solutions 
 
Thiol Ligand 
Solution 

Concentration 
(mM) 

AET 25 
MP 25 
Cysteine 10 
MPA 5 
MUA 1 
ATP 0.01 
MBA 0.01 
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capillaries). To allow the MCs to be inserted into the capillaries, some 

pretreatment of the capillaries was carried out. First the polyimide coating on one 

end of the capillaries was burned off, and the other end was sealed with soft 

playdough®. The burned end was then dipped in HF buffer [Caution: HF is very 

corrosive to skin] and etched for 100 minutes to reduce the outer diameter.  The 

sealed end was then cut off.  Deionized water was allowed to fully fill the etched 

capillaries several times until the etched end appeared to be clean. Meanwhile, the 

nanostructured MCAs were fixed on an x-y-z stage, with all the levers in the 

direction parallel to the capillaries. The x-y-z stage was then manipulated, using a 

charge coupled device camera for visualization, to allow for insertion of the MCs 

into the capillaries.  Once the capillaries were inserted into the capillary ends for 

functionalization, the opposite end of the capillaries were inserted into the 

appropriate thiol solutions and filled by simple capillary action.  During MCA 

functionalization, MCs and etched capillary ends were visualized with a WAT-

902C camera connected to a Sony Trinitron Video Monitor, which provided a 20x 

magnification.  All SERS spectra were collected by using a modified version of a 

LabRam Spectrograph from JY-Horiba[114]. The instrument used an Olympus 

BX-40 microscope with a 10x (0.25 NA, 1) objective that delivers up to 8.9 mW 

of the 632.8 nm radiation from a He–Ne laser. The scattered light was dispersed 

with a 600 grooves mm-1 grating, imaged with a 1024 x 256 thermoelectrically 

cooled charge-coupled device (CCD) camera, and processed with Labspec 4.03 

software.  An x–y–z stage was used to adjust the focusing of the microscope 



 57

objective and the positioning of the laser spot under stationary and translating 

conditions. 

MCAs were mounted in a brass flow cell in an optical system[115]. The 

cell had one inlet port for background/analyte delivery, one outlet port, and a 

glass window to facilitate the observation of cantilever deflection. A beam of 

laser light from an array of vertical cavity surface emitting lasers (VCSELs) 

(Avalon Photonics, 850 nm, 5 mW) was focused onto the tip of each MC, and the 

reflected beam was captured and monitored by a single position-sensitive 

detector. 

  A single lens was used to focus the VCSELs so that the beam from each 

VCSEL was focused onto a single corresponding cantilever (12 VCSELs onto 12 

cantilevers).  The deflection of the cantilever resulted in a corresponding motion 

of the reflected beam as monitored by the PSD. An in-house-created LabView 

program controlled a multiplexing scheme that allowed the VCSELs to be 

activated individually so that one MC was illuminated at a time and the motion of 

all MCs was monitored by the single PSD. Analyte solutions were delivered to the 

flow cell via a system of vessels connected to three-way valves allowing for 

switching between different solutions (buffer and samples) with minimal 

disturbances of the flow. Each measurement in the study represents a 60 second 

injection of a metal chloride solution.  All metal chloride solutions were prepared 

in pH 5 AB, which was also used as a background buffer solution. Chemically 

modified cantilevers were allowed to equilibrate in the background solution until 

stable baseline was achieved before any measurements. 
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In the SERS experiment, the focusing laser scanned in a perpendicular 

direction across 4 adjacent cantilevers functionalized alternately with ATP and 

MBA. SERS spectra were recorded while the area interrogated moved laterally 

over a total 1 mm distance. For each cantilever 50 spectra were recorded (one 

every 2 µm translational step). For each spectra the peak height of the 

characteristic Raman band of ATP (1010-1050 cm-1) and MBA (1055-1095 cm-1) 

was recorded and plotted.  

For MCA measurements, an in-house-created LabView program was used 

to control each VCSEL to be activated individually so that one cantilever was 

illuminated by only one VCSEL at a time. At the beginning of each cycle, the first 

VCSEL was activated, illuminating the corresponding cantilever 1. The motion of 

the reflected beam was monitored by the PSD, and output signal from the detector 

was sampled by a 16-bit A/D converter at a rate of 1 kHz. 50 samples by the A/D 

converter were averaged to comprise one point. The sequence was then repeated 

for VCSEL/cantilevers from 2nd to 12th (the last). The entire cycle of measuring 

and recording all 12 MCs takes less than 1 s; therefore, a delay was added so that 

the cycles begin at 1-s intervals. VCSEL control and data acquisition I/O were 

performed using a National Instruments NI-6014 DAQ card in an 800-MHz 

Pentium III PC[116].  Although the MCA and VCSEL arrangement allows for the 

monitoring of all 12 cantilevers, in the selectivity studies only 5 cantilevers 

responses (see below), one for each phase, are represented.  However, the data 

used by the pattern recognition algorithm included responses from all 12 
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cantilevers comprising the array with each of the 5 phases represented multiple 

times. 

Analysis of the entire response profile (responses recorded once per 

second for each MC during the entire 60 second analyte injection period) for the 

array for each metal ion was used in an attempt to classify the metal ions. Prior to 

classification, the information contained within the analyte-induced bending 

dynamics of the MCAs must be distilled into a form that can be used with existing 

classification methods.  Since inputs for general classification method are N-

dimensional vectors, it is necessary to transform the information contained within 

the time series response of each cantilever into a single vector.  It was 

demonstrated in Archibald et al[115] that independent component analysis can be 

used to compress the movement of an array of micro-cantilever over a period of 

time, into a single feature, which is a N-dimensional vector, that was used by 

neural networks to accurately classified both the type and concentration of the 

tested analyte.  Below the method of transforming MCA signals into features[115] 

is briefly introduced.  

Given an array of N cantilevers, suppose that x t( )  represents the N-

dimensional time signal for the entire MCA, and this signal can be representing 

by a linear mixing of independent sources, or 

( ) ( )tAstx =                                             (8) 

for s t( ) the M-dimensional time series vector of independent sources and A  the 

N × M  mixing matrix.  If the mixing matrix has full rank and the number of 

sources is less than or equal to the number of cantilevers, then independent 
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component analysis will recover W , the mixing matrix given only the signal x t( ), 

such that 

SPAW =−1                                                     (9) 

Here, S  and P  are arbitrary scaling and permutation matrices 

respectively.  Stated simply, given only the measured motion of the MCA data, 

the independent component analysis method produces the independent sources of 

this signal and the mixing matrix, up to arbitrary scaling and permutation of the 

sources.  The benefit of determining this transformation is that the columns of the 

mixing matrix provide distinct features that can be used for accurate 

classification.  In this study, only the most dominant feature (the column in the 

mixing matrix with the greatest magnitude) is used in classification[115]. 

Support vector machines (SVM), a classification paradigm developed over 

the last decade in the field of machine learning theory[117], have proven to be an 

effective tool across many scientific disciplines.  In order to describe the core 

ideas of SVM we must consider the features described above or N-dimensional 

vectors, which can equally be consider as hyper-dimensional points.  SVM is a 

binary classifier, meaning it is designed to identify only two different groups.  

SVM classification of two groups of features occurs by finding a surface that 

optimally separates these groups.  Once this surface is determined, classification 

occurs for any new feature presented to SVM by calculating which side of the 

surface this point lies.  The surface that optimally separates the two groups of 

features is termed the decision surface.  Strength of SVM is that complex decision 

surfaces can be generated at low computational cost through the use of kernel 
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functions, which have the effect of transposing features into spaces that increase 

the linear separability of the two groups of features.  The geometric nature of the 

SVM classifier makes it possible to train adequately on reduced sets. One major 

drawback of SVM is that classification is binary.  However, this issue is 

overcome in a simple and robust procedure that consists of training several SVM's 

simultaneously in a one-against-one scheme[118], and this is the procedure used 

in this chapter (see below). 

3.3 RESULTS AND DISCUSSION 
 

 In our previous studies using SAMs as RPs for metal ion detection[112], 

optimization of the sensor response focused on parameters concerning the SAMs.  

Studies involving parameters such as functionalization time, thiol concentration, 

thiol chain length and functionality were performed.  In this present work, much 

attention was paid to optimization of the underlying dealloyed nanostructured 

layer.  The first parameter studied concerning the dealloyed layer was that of 

metal layer thickness.  Experiments were carried out measuring responses of 

SAM functionalized dealloyed layers to metal ions for metal layers ranging from 

25 – 200 nm.  Figure 13 demonstrates that as the dealloyed thickness of the 

mercaptopropanol coated cantilever was increased up to 150 nm, the response to 

0.1 mmol/L of Cu2+ also increased.  However, as the dealloyed layer thickness 

was further increased to 200 nm, the response decreased slightly.  According to 

the Stoney Equation (Eq. 5), as the cantilever stiffness increases the response 

decreases (note E t2 in denominator).  The increase in dealloyed thickness results 

in an increase in surface area (see below) and the Δσ term in Eq. 5 that resulting  
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Figure 13 The effect of dealloyed thickness was studied by monitoring the 
response to a 0.1 mmol/L Cu2+ solution for MCs with different thicknesses of the 
dealloyed layer and functionalized with MP. 
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from coulombic forces associated with metal-metal repulsion can be expected to 

increase as well[112].  However, at some point the effect of increasing stiffness 

(note both terms in the denominator change with dealloyed thickness) appears to 

reverse (dominate) the trend due to increasing Δσ.  Experiments involving 

varying the Ag/Au ratio from the normal 50/50 to 40/60 and to 60/40, along with 

experiments varying the dealloying etching time from 2.5 min. to 5 and 10 min., 

did not yield any improvements.    

Further experiments were performed to try to better understand why the 

increased thickness of the underlying dealloyed layer demonstrated an 

enhancement in response of the MC to metal ions.  Figure 14 shows the response 

of three different cantilevers coated with 35 nm of smooth gold and 50 nm and 

150 nm dealloyed layers to an in-situ functionalization with a SAM of propane 

thiol.  The 35 nm smooth gold surface shows the smallest response to the 

formation of a monolayer of propane thiol, with the 50 and 150 nm dealloyed 

responses considerably larger.  A larger thickness gives a larger response to the 

formation of propane thiol monolayer suggesting a larger amount of thiol 

immobilized, but as stated above a larger dealloyed thickness may decrease the 

ability of the cantilever to respond due to increased stiffness.   

To quantify the amount of thiol on the each surface, cyclic voltammetry 

experiments, using the strategy of Widrig et al[119], were performed with silicon 

wafers, which were vapor deposited and functionalized at the same time as the 

three cantilever types in the thickness study.  The cyclic voltammetry experiments 

demonstrated that the 35 nm smooth gold coated silicon wafer was coated with  
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Figure 14 Surface thiolation studies were carried out by measuring the response 
of each cantilever (35 nm smooth gold, SG, 50 and 150 nm dealloyed, DA) to an 
in-situ functionalization with 1 mmol/L propane thiol.  Oxidative desorption of 
the propane thiol from the gold surface through cyclic voltammetry made it 
possible to quantify the amount of thiol on each surface.  SEMs of each surface 
were taken at 8000x magnification.    
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1.2 nmol/cm2 of propane thiol, while 50 and 150 nm dealloyed surfaces were 

coated with 7.4 nmol/cm2 and 18 nmol/cm2 respectively.  The larger trend in the 

cyclic voltammetry values versus actual responses during functionalization with 

propane thiol underscores the interplay between increases in surface stress with 

greater surface area and the changes in stiffness.  The SEM images, seen in Figure 

14, indicate the potential importance of surface morphology on determining 

response characteristics of the MCs.   The greater the degree of roughness and 

surface crevices, the greater the available surface for thiol immobilized.  It can be 

seen that the 50 nm dealloyed has greater roughness than the smooth gold.  The 

thicker 150 nm dealloyed seems to have transitioned from a roughened surface to 

a more porous one.  Surface area may not be the only factor in determining Δσ 

associated with functionalization and/or binding of metal as the effectiveness of 

translating the energies associated with those processes into potential energy 

stored in the bent cantilever can reasonably be expected to be morphology 

dependent[31].  

The first step in creating a differential responding MCA involves developing a 

method that allows differential coating of the cantilevers in an array.  In our prior 

gas phase sensing work, differential coating was accomplished by singularly 

vapor depositing a RP through a slit mask onto one cantilever[115].  While this 

practice of sequentially depositing phases onto each cantilever does allow for 

creation of arrays, the process is time consuming, tedious, and the RP are not 

covalently anchored to the cantilever surface to enhance stability.  In this work, 

MCAs are prepared in a liquid phase reaction process via capillary coating 
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individual cantilevers with thiolated reagents.  Figure 15 demonstrates how the 

capillary coating process is accomplished.  The top photograph displays several 

cantilevers of the MCA inserted into different capillaries by way of a micrometer 

controlled stage.  Then, in the bottom photograph, the functionalization solution 

fills the capillary through capillary action.  The picture demonstrates that the 

functionalization solution was contained in the capillary and no solution leaks out 

on the base of the MCA chip.  If solution were to leak out of the tip of the 

capillary, cross-contamination problems could arise and the cantilevers could be 

coated with more than one type of thiolated ligand.  The SERS experiment in 

Figure 15B demonstrates that the thiolated ligand RP were in fact immobilized on 

the surface.  In this experiment, silver coated MCs were inserted into capillaries 

that were subsequently filled with either ATP or MBA and allowed to react for 2 

hours.  After functionalization, the MCs were removed from the capillaries and 

SERS spectra were collected from each MC surface in a dry state by the spatial 

translation method described above.  Figure 15B shows the intensity of two 

different Raman bands specific for ATP (1010-1050 cm-1) and MBA (1055-1095 

cm-1) as the instrument scanned laterally across four cantilevers in the array.  The 

experiment not only confirms that the cantilevers are differentially coated with 

ATP and MBA, but that the coating is fairly uniform across the width of the 

cantilever surface and there is no cross-contamination.  While MCA sensing and 

this SERS experiment were performed with distinctly different instrumental 

arrangements and different cantilever metallic coatings, in principle it should be 

possible to add the SERS component to MCA measurements directly, perhaps  
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Figure 15 The ability to differentially functionalize adjacent cantilevers in a 
MCA is demonstrated using a SERS approach.  Differential functionalization is 
accomplished by a capillary coating process pictured in A1 dry insertion of the 
cantilevers into the capillaries and A2 with the functionalization solution reaching 
the cantilevers via capillary action.  B spatially displays the peak height of 
characteristic Raman bands for two thiolated compounds (ATP 1010-1050 cm-1 
& MBA 1055-1095 cm-1) which were alternately coated on a series of four 
adjacent cantilevers via capillary coating. 
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even using the VCSEL radiation for Raman excitation.  In fact, in unpublished 

work, we have observed that dealloyed surfaces exhibit some SERS activity with 

visible excitation.   

To better characterize sensor performance, calibration studies were carried 

out.  The MCA response to calibration experiments was measured for each of the 

six metal ions included in the study.  Table 4 includes the slope of the calibration 

curve, r-squared value, and relative standard deviation (RSD) for each of the six 

metal ions.  The MCA sensor demonstrated limits of detection as low as 10-8 

mol/L based on 3σ of multiple injections of 8.0 x 10-7 mol/L copper chloride 

solution divided by the slope of the copper chloride calibration plot.    

The purpose of creating a sensor array based on this ligand approach is to 

impart a greater degree of distributed selectivity to the system.  Arrays of RPs can 

be designed to incorporate a range of analyte-phase interactions (e.g. dipole, van 

der Waals, hydrogen bonding, electrostatic, coordinate covalent bonding).  Each 

RP in the array may be designed to utilize one interaction more so than the others.  

The diverse range of analyte-RP interactions in turn provides diversity to the 

sensor responses.  The advanced processing capabilities of pattern recognition 

algorithms can then be applied to aid in interpretation of the sensor array 

response.  Rather than a high degree of selectivity between a very specific 

analyte-RP interaction (e.g., Bioaffinity or chelate metal interactions), that 

generally involves large binding constants and a lack of reversibility, differential 

selectivity has been imparted to the system through the approach applied herein.  
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Table 4 The slope, r-squared value, and RSDs for the response to the MCA to three injections of each metal ion at five 
different concentrations including (1.6 x 10-7, 8.0 x 10-7, 8.0 x 10-6, 2.0 x 10-5, and 1.0 x 10-4 mol/L) 

 

 

 

 

 

 

 

Phase MP AET MPA Cyst 
Metal Slope R Squared RSD Slope R Squared RSD Slope R Squared RSD Slope R Squared RSD 
CuCl2 748 0.9578 9.02 769 0.9343 11.24 1065 0.9979 9.92 739 0.9373 12.35
CoCl2 578 0.9698 8.94 597 0.9577 9.97 635 0.9039 10.42 NA NA 11.64
CsCl 780 0.6635 11.1 753 0.9236 12.48 1127 0.8797 10.89 NA NA 9.95
LiCl 547 0.9255 10.7 598 0.9333 12.32 1042 0.9736 12.63 529 0.9114 9.02

FeCl3 528 0.9712 4.3 NA NA 5.67 NA NA 4.71 510 0.9607 4.29
AlCl3 956 0.8878 10.2 832 0.9997 10.13 NA NA 10.78 852 0.7668 9.58
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In this chapter, electrostatic and coordination analyte-phase interactions 

were taken advantage of by each mono-dentated RP.  However, the ligand 

functionality for each RP was altered (distributed among the various MCs in the 

array), effectively changing the interaction of the RP with each metal ion.  

Selectivity studies were carried out to determine the diversity of response 

signature of each analyte.  Responses to different concentrations of each analyte 

were measured for all the RPs in the array.  Figure 16 demonstrates the diversity 

of response from metal ion to metal ion.  No two response patterns are extremely 

similar to each other.  This apparent response diversity bodes well for metal ion 

classification via pattern recognition algorithms. 

The classification (metal ion identification) accuracy of the MCA sensor 

was determined using a leave-one-out cross-validation scheme on the independent 

component analysis generated features.  For each trial, a one-against-one SVM 

multi-classifier was trained using all the remaining trials.  The experimental trials 

consisted of triplicate injections of five concentrations (range of 10-4 – 10-7 mol/L) 

of each analyte.  One of the concentrations in the middle of the range was 

repeated in triplicate for a total of 18 trials for each metal ion analyte.  Each trial 

contained 12 data sets, one for each cantilever (even though some of the 

cantilevers were redundant or dealloyed blanks).  Thus for each trial, the SVM is 

trained blind to that particular one-out-of-eighteen trial.  Once the SVM is 

completely trained the trial that was removed from the training can be tested and 

classified.  The generalized prediction rate for each analyte is the fraction of times 

each trial was classified correctly from a blindly trained SVM.   
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Figure 16  The response diversity to each metal ion is demonstrated in the 
selectivity plot.    In these experiments, 0.01 mmol/L solutions of each metal ion 
were injected for 60 sec. and the peak signals are plotted.  The insert shows a 
representative entire response profile of a mercaptopropanol coated cantilever to 
0.01 mmol/L Cu2+.  In this work a 1 mV response corresponds to roughly a 1 nm 
MC tip deflection. 
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Table 5 Generalized prediction rates for each analyte using leave one out cross-
validation of one-against-one SVM multi-classification with independent 
component analysis feature extraction. 
 
  Predicted fraction for each analyte 
Tested 
Analyte AlCl3 CoCl2 CsCl CuCl2 FeCl3 LiCl 

AlCl3 0.8889 0 0 0.1111 0 0 

CoCl2 0 0.7222 0.0556 0.1111 0.1111 0 
CsCl 0 0 0.8333 0.0556 0 0.1111 

CuCl2 0 0.1667 0.0556 0.7778 0 0 

FeCl3 0 0.1111 0.1111 0.0556 0.7222 0 
LiCl 0 0 0.1111 0 0.0556 0.8333 
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The generalized prediction rate is a powerful measurement of how much 

informational content is generated from the sensor array for each analyte, and 

these generalized prediction rates are given in Table 5.   It can be seen in this table 

that the sensor array is responsive to Al3+, Cs+,  Fe2+, and Li+; producing enough 

information that these metal ions can successfully be identified at rates 

approaching 90%.  However, this is not the case for the doubly charged cations 

Co2+
 and Cu2+ where the generalized prediction rates are considerably less 

significant. For example, the Cu2+ was misclassified half the trials.  Improvements 

in classification may be realized with improved feature extraction methods and as 

the library of experimental results for this sensor array builds, providing increased 

information about the dynamical range and details for each analyte.  The fact that 

the pattern recognition incorporated the entire concentration range, including the 

concentrations close to the limit of detection where responses were less 

reproducible, underscores the power of this approach to accurately classify 

unknown analyte injections.     

In summary, the advantages afforded by configuring MCs in an array 

format functionalized for differential selectivity is demonstrated for the first time.  

An ability to uniquely functionalize the individual cantilevers in arrays is verified 

by a spectroscopic approach. Sensor performance is optimized through altering 

parameters related to the underlying nanostructured dealloyed layer.  The optimal 

dealloyed layer for sensing was shown by various surface characterization 

methods to be related to increasing amount of thiol ligand bound to the sensing 

surface, while also limiting overall cantilever thickness.  At optimal conditions 
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the MCA demonstrated limits of detection as low as 1 x 10-8 M.   Selectivity 

experiments yield response signatures that appear unique to the metal ions tested 

and, when used in conjunction with pattern recognition algorithms, provide a 

good ability to classify each metal ion even with limited training sets.  

3.4 FURTHER WORK: MICROCANTILEVER LC HYPHENATION 
 
 3.4.1 Introduction 
 

Pattern recognition algorithms demonstrated that adequate metal ion 

selectivity could be generated when applied to thiolated-ligand MCA responses.  

However, when pattern recognition algorithms are applied to the MCA responses 

of metal ion mixtures they demonstrate an inability to distinguish each metal 

present in the mixture.  Therefore, new attempts must be made to devise solutions 

that allow MCAs to detect each component in metal ion mixtures. 

 Ion-exchange chromatography (IEC) has been used for years to separate 

metal ions in a mixture[120-135].  Several researchers have incorporated 

unconventional detectors for detection of metal ions separated by IEC[136, 137].  

Thiolated SAM coated MCAs have been demonstrated for detection of metal ions 

(see above) and may be readily coupled to IEC for separation and detection of 

metal ions in a mixture.  Current detectors for IEC demonstrate no ability to 

distinguish between the components of different chromatographic peaks apart 

from retention times.  Additionally, current detectors possess no ability to identify 

the analyte present in the chromatographic peak.  The combination of pattern 

recognition algorithms, a MCA sensor, and IEC might allow for not only 
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measurement of a chromatographic peak, but identification of that peak greatly 

enhancing the selectivity of the system.    

In this further study, a standard IEC separation of a metal ion mixture was 

established to test the feasibility of using a thiolated SAM coated MCA as a 

detector for IEC of metal ions.  Experiments were conducted to determine 

methods to improve the sensitivity and to minimize the noise of the MCA to metal 

ions.  Additionally, flow cell designs were also studied to determine the optimal 

flow cell volume for adequate detection of metal ion chromatographic peaks.   

 3.4.2 Experimental 
 

Silicon MCs the same as detailed previously in this chapter were 

commercially available (Mikro Masch Co., Sunnyvale, CA).  The metals used in 

vapor deposition were obtained from Kurt J. Lesker, Gatewest, and Alfa Aesar 

Co., respectively. The flexible fused silica capillary detailed previously was 

purchased from Polymicron Co.  All the metal chloride analytes, salts for 

preparation of buffer solution, and thiolated ligands were obtained from either 

Sigma or Fisher at highest purity and used as received.  HF buffer containing 

ammonium fluoride and hydrofluoric acid (HF) used for the capillary etching was 

purchased from Transene Company. Water used for preparation of solutions was 

obtained from a Barnstead E-Pure water filtration system. 

The creation of MCs having a smooth gold or dealloyed surface was 

achieved by using a PVD approach. More details about the vapor deposition 

instrumentation and approach can be found elsewhere[112, 113].  Dealloyed 

nanostructured surfaces with a composite 50/50 Au/Ag film with a thickness of 
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150 nm were deposited using the vapor deposition approach.  All Ag/Au, smooth 

Au coated cantilevers used in our studies were chemically modified with SAMs of 

n-alkyl compounds with a thiol group for immobilization of the ligand to the 

metallic MC surface on one end and  mono-dentated and bi-dentated ligand 

functionalities for the complexation of sample metal ions on the opposing end.  

To differentially functionalize each cantilever with different thiolated 

ligands, a capillary coating apparatus was designed.  This apparatus was described 

in detail previously in this chapter in section 3.2.  

MCAs were mounted in a variety of flow cells (see below) in an optical 

system[115].  The largest volume flow cell (D) was made of brass, was sealed 

with an o-ring and had a volume of approximately 150 μL.  The intermediate flow 

cell (C) was also made of brass, was sealed with an o-ring and the volume of the 

flow cell was 75 μL.  The small volume flow cell (B) was made of delron, was 

sealed with a gasket and had a volume of 5-10 μL.  These cells had one inlet port 

for background/analyte delivery, one outlet port, and a glass window to facilitate 

the observation of cantilever deflection. A beam of laser light from an array of 

vertical cavity surface emitting lasers (VCSELs) (Avalon Photonics, 850 nm, 5 

mW) was focused onto the tip of each MC, and the reflected beam was captured 

and monitored by a single position-sensitive detector. 

A single lens was used to focus the VCSELs so that the beam from each 

VCSEL was focused onto a single corresponding cantilever (12 VCSELs onto 12 

cantilevers).  The deflection of the cantilever resulted in a corresponding motion 

of the reflected beam as monitored by the PSD. An in-house-created LabView 
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program controlled a multiplexing scheme that allowed the VCSELs to be 

activated individually so that one MC was illuminated at a time and the motion of 

all MCs was monitored by the single PSD. Analyte solutions were delivered to the 

flow cell via a system of vessels connected to three-way valves allowing for 

switching between different solutions (buffer and samples) with minimal 

disturbances of the flow. Each measurement in the study represents a 60 second 

injection of a metal chloride solution.  All metal chloride solutions were prepared 

in pH 5 AB.  Several background solutions/mobile phases were used in the 

experiments they consisted of mobile phase 1:  1.0 mmol/L of Ce(NO3)3 and 0.01 

mmol/L of sodium dodecyl sulfate (SDS), mobile phase 2: 3.0 mM HNO3 and 1.0 

mmol/L of Ce(NO3)3, and mobile phase 3: AB pH 5 and 1.0 mmol/L of Ce(NO3)3.  

Chemically modified cantilevers were allowed to equilibrate in the mobile phase 

solution until stable baselines were achieved before any measurements were 

made.  For MCA measurements the method was described previously in section 

3.2. 

 The high performance liquid chromatography (HPLC) system used in 

these experiments was a Hewlett Packard Model 1100.  The UV detector 

wavelength for indirect UV detection experiments was set at a fixed wavelength 

of 254 nm. 

 3.4.3 Results and Discussion 
 

   The first step in the study was to establish a standard separation 

procedure for several metal ions and then validate that procedure through an 

established detection scheme.  The validated standard separation results could 
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then be used to compare to the MCA sensor response when used as a detector for 

metal ions separated by IEC.  The standard separation procedure developed 

involved the separation of Cs+1, Co+2, Sr+2, Ba+2, and Pb+2 ions in a mobile phase 

consisting of an aqueous solution of 1.0 mmol/L Ce(NO3)3 and 0.01 mmol/L SDS.  

The column used to separate the metal ions was prepared in-house by dynamically 

functionalizing a standard commercially available C-18 column with SDS.  The 

sulfate group of the SDS then acts as the ion exchanger in the column.  The 

dynamic coating of the column with SDS is accomplished by flowing a solution 

of 0.01 mmol/L SDS through a standard C-18 column for 1 hr at a rate of 1.0 

mL/min.  The hydrophobic end of the SDS interacts with the hydrophobic C-18 

and a quasi-ion exchange column is created.  The SDS functionalization has a 

life-time of up to 4 months.  The Ce(NO3)3 is added to the mobile phase to 

accomplish indirect UV detection.  Cerium(III) absorbs UV light at 254 nm, as an 

analyte metal ion is confined to a discrete band by the chromatographic column, 

the concentration of cerium(III) in that band is very low.  As the analyte metal ion 

band passes by the detector more UV light passes through the sample and a 

negative peak in the chromatogram results.  The indirect UV detection scheme 

was the standard detection method used in the experiments to establish a standard 

metal ion IEC separation.  The experimental elution order of the metal ions in the 

devised standard separation procedure (Figure 17) was consistent with the 

expected elution order from the literature[138].  With an established separation 

procedure and experimental elution times, the MCA sensor could be incorporated 

into the IEC system to be used as a detector for metal ions.  
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Figure 17 Cation Exchange Separation of metal ions and indirect UV detection  
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Before the MCA was incorporated into the IEC system, experiments were first 

conducted to demonstrate that the procedural mobile phase containing cerium 

nitrate and SDS would not interfere with the interaction of the ligand 

functionalized SAM coated MCs with metal ions.  Injections of 1.0 x 10-4 mol/L 

copper chloride were made in triplicate into the flow cell housing the MCA using 

a traditional gravity flow scheme detailed in chapter 2.  Figure 18 shows the 

response of one cantilever in the MCA sensor to triplicate injections of the copper 

chloride solution.  The responses being on the same order of magnitude (50-100 

mV) as previous experiments in this chapter demonstrate that the procedural 

mobile phase does not interfere with the sensor ligand-metal ion interaction.  The 

responses also demonstrate that the MCA is reversible in this particular mobile 

phase. 

      Even though the SDS dynamically coated C-18 column provided sufficient 

separation, in an effort to make the separation procedure more standardized and 

reproducible a commercially available strong cation exchange column was 

purchased and incorporated into the experiments.  Incorporation of a new column 

into the system necessitated the use of a new stronger mobile phase containing 

nitric acid with a higher ionic strength.  Several different metal ions of interest, 

Li+1 and Cd+2, were taken into consideration at this point of the study and were 

separated using the new strong cation exchange column (Figure 19).  Barium and 

lead were left out of the metal ion mixture because with the strong cation 

exchange column the elution times were too large.  The strong ion exchange 

demonstrated better performance according to chromatographic peak shapes than  
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Figure 18 Triplicate measurements of 0.1 mmol/L CoCl2 in mobile phase 1 using 
the traditional injection technique.  
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Figure 19 The separation of metal ions using a commercially available strong 
cation exchange column. 
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the previously used SDS C-18 column.  This may be due to the fact that the ion 

exchanger was more evenly distributed through the commercially available 

column than through the dynamically coated SDS column.  The MCA sensor was 

used as a post ion exchange column detector for detection of separated metal ions.  

The first experiments conducted after the coupling of the MCA sensor and IEC 

had a very noisy baseline and no response to metal ions was detected with the 

MCA.  The new mobile phase used in the experiments was thought to interact 

with the metal ions causing a decrease in sensitivity and emergence of the 

baseline noise problem.   

 In an effort to overcome the issues introduced by the strong cation 

exchange column’s incorporation into the experiments, a two pronged approach 

focused on identifying/eliminating baseline noise and increasing sensitivity of the 

MCA was undertaken.  The first attempt at eliminating the source of the baseline 

noise was a simple normalization of the data.  This was done by making 

measurements with cantilevers coated with thiolated ligand SAMs and cantilevers 

coated on with a dealloyed layer.  SAM coated cantilever responses were divided 

by dealloyed cantilever responses to determine if the low frequency baseline noise 

could be eliminated and the metal ion peaks isolated.   The noise was evaluated 

based on the standard deviation of the data set.  The normalization had no impact 

on the low frequency noise and provided no improvement of the noise. 

 As a result of the ineffectiveness of the normalization further attempts at 

identifying the source of the low frequency noise were made.  The flow rates used 

in the MCAD-IEC experiments were higher than the flow rates used in traditional 
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MC sensing experiments.  Therefore, one possible source of the noise was thought 

to be flow rate related.  To test this source of noise, the mobile phase was flowed 

through the flow cell (D) at different rates ranging from 0.1 to 3.0 mL/min.  At 

each flow rate, the standard deviation of the data set was computed and compared.  

There was no significant improvement in the baseline noise at lower or higher 

flow rates.  As the flow rates were changed, the low frequency baseline noise was 

present in each measurement suggesting that the noise was not flow rate related.   

Another potential source of the noise was thought to be the pulsations of 

the HPLC pump itself.  Therefore, experiments were conducted in which the 

mobile phase was flowed through the flow cell (D) by gravity flow and by the 

HPLC pump.  The standard deviations of the baseline in each of these 

experiments were then compared.  It was expected that the noise would be larger 

when the HPLC pump was used to push mobile phase through the flow cell.  

However, this was not the case; the noise was the same in both flow methods.  

Therefore, the possibility of the HPLC pump causing noise in the system was 

eliminated. 

 During these experiments, it was noted that the longer the experiment 

lasted, the more improvement could be seen in the baseline noise.  Based on this 

fact, it was thought that the solid state VCSELs used to track cantilever movement 

may need a small amount of warm-up time before becoming stable.  To test this 

hypothesis, baseline measurements were recorded over 2000 seconds.  The 2000 

second measurement was then broken down into to halves.  The standard 

deviation of the baseline noise was then calculated separately for 0 to 1000 
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seconds and 1001 to 2000 seconds.  The standard deviations were compared for 

the two sections and it was revealed that the noise of 1001 to 2000 seconds was 

reduced for 11 of the 12 cantilevers in the array (Figure 20).  The laser warm-up 

time appeared to lend some improvement to the baseline noise.  For all future 

experiments, the lasers were warmed up by allowing them to run for 10 minutes 

before an experiment was started.  The lack of response of the metal ion in the 

new flow cell to the MCA was thought to be a sensitivity issue, so different 

approaches to enhancing the sensitivity of the MCA were devised and tested.  The 

first attempt at enhancing the sensitivity of the MCA was to thin the silicon 

cantilevers before deposition or coating by placing the silicon chip in a solution of 

KOH.  The thinning however only increased the noise of the thiolated ligand 

coated MCA and did not enhance the response of the MCA to a lithium chloride 

solution.  The next attempt at enhancing the sensitivity of the MCA was made by 

functionalizing the dealloyed surface of the MC with bi-dentate thiolated ligands 

rather than mono-dentated thiolated ligands.  A 1.0 x 10-4 mol/L solution of 

lithium chloride was injected into a flow cell housing an MC functionalized with 

a thiol with amine and carboxylic acid functionalities.  The response was lower 

(0.02 V) than the (0.1 V) response of the mono-dentated thiolated SAM with 

either amine or carboxylic acid functionalities.  A third approach at enhancing the 

MCA response to metal ions was to imprint a specific metal ion during the SAM 

formation time.   As the SAM formed in the presence of a specific metal ion, then 

the SAM would be imprinted to preferentially interact with that particular metal  
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Figure 20 Effects of laser warm-up time on noise levels. 
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ion.  However, after SAM formation was complete, the MC imprinted for a 

specific metal ion showed no preference for that metal ion when exposed to it.  

However, it is anticipated that the imprinting approach might prove more fruitful 

with more experimental work. 

 Chromatographic changes were made also in an attempt to enhance the 

sensitivity of the MCA.  A sample background weaker than the mobile phase was 

injected with a single metal ion sample to cause the metal to stack in the region at 

the end of the sample plug.  Even when performing the stacking experiment, a 

signal from the metal ion could not be measured with the MCA.  A weak ion 

exchange column was incorporated into the system rather than the strong ion 

exchange column.  The weak ion exchange column was used because it was a 

concern that the strong mobile phases needed in strong cation exchange 

chromatography were degrading the MCA sensing phase over time.  Also, weaker 

mobile phases could be used in the experiments without a significant increase in 

retention time of the metal ions. It was thought that the strong mobile phases 

could have been hindering the interaction of the metal ion with the MCA.  When 

the weak ion exchange column and the weak mobile phases were incorporated 

into the system, a response to any metal ion was still not measure with the MCA.  

Therefore, other factors that could be impacting the response were studied.       

 With some of the noise issues solved, further MCAD-IEC experiments 

were performed.  Single component metal ion solutions were tested in an effort to 

obtain a MCA response to a chromatographic metal ion peak.  Figure 21 

demonstrates that a copper peak could be detected with a MCA sensor after  
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Figure 21 Peak tailing demonstrated by a MPA coated cantilever’s response to 
copper chloride after eluting from the ion exchange column. 
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separation with the ion exchange column.  However, as is evident in Figure 21, 

while sufficient sensitivity could be achieved with this design significant tailing 

was present in the chromatographic peaks.  The tailing was believed to be caused 

by the poor washout of the current flow cell (D) design which housed the MCA 

sensor.  The flow cell’s volume (150 μL) was believed to be too large for 

adequate washout.  The asymmetrically broad peak demonstrates excessive 

volume and poor washout related to stagnant areas within the flow cell.  Trapped 

analyte slowly leaves the stagnant areas of entrapment and interacts with the 

MCA causing the back half of the chromatographic peak to exhibit a large amount 

of tailing (Figure 21).    

Therefore, a new flow cell designs (B and C) were devised and 

incorporated into the MCAD-IEC experiments.  The new designs were based on 

the fact that a smaller internal volume would minimize the contributions of 

washout problems to peak tailing.  The new flow cell designs had internal 

volumes of 5-10 μL (B) and 75 μL (C).  The washout profiles of each flow cell 

was tested by injecting a plug of material that had no absorbance in a mobile 

phase containing cerium nitrate which has a high absorbance at the wavelength 

used for the experiment (254 nm).  The rate at which the non-absorbing species is 

washed out of the flow cell can be seen in Figure 22.  The ideal situation for 

minimizing a flow cell’s impact on the washout of the system was measured by 

simply replacing the flow cell in the system with a union (blue trace A).  A union 

is designed to have negligible washout volume; therefore a flow cell with a 

washout profile similar to that of the union would be ideal for our purposes.  In  
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Figure 22 Flow profiles in several different flow cell geometries are depicted. 
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these experiments, the new flow cell design (pink trace, B) performed almost just 

as well as the union.  However, the original flow cell design demonstrates the 

presence of significant washout volume (red trace, D).  The flow cell design (C) 

with an intermediate volume of 75 μL showed an improved, but not ideal washout 

profile (green trace, C).  The sample plug clears the union and the small volume 

flow cell (B) design in 45 seconds, but in the large volume flow cell (D) design, it 

takes the sample plug more than 3 minutes to completely washout of the flow cell.              

The small volume flow cell (B) design appeared enable the reduction of 

peak tailing according to the washout profiles.  However, when simple MCAD-

IEC experiments were performed with a single component metal ion, no MCA 

response to the metal ion could be obtained. 

The decrease in the flow cell volume caused a large increase, thirty times 

larger, in the linear flow velocity of mobile phase in the flow cell.  The kinetics of 

the sensor ligand-metal ion interaction may not be fast enough to allow for 

sufficient sensing of the metal by the MCA with the increased linear flow 

velocity.  To determine if the increased linear flow velocity was causing sensing 

problems experiments were conducted with a sample plug of 1 x 10-4 mol/L 

copper chloride injected directly into the MCA flow cell at different flow rates.  

Experiments were carried out at flow rates of 1.0 mL/min (blue trace), 0.1 

mL/min (pink trace) and 0.03 mL/min (green trace).  Response of a MP coated 

cantilever is shown in Figure 23.  It is evident by these results that the response of 

the MCA is dependent on the flow rate the small flow cell is used.  The highest 

flow rate appears to not allow the metal ion sufficient time to interact with the  
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Figure 23 Flow rate study with new flow cell design. 
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MCA and no response is measured.  The 0.1 mL/min flow rate allows for some of 

the metal to interact with the MCA, but a small response measured.  The lowest 

flow rate, 0.03 mL/min, allows for good interaction of the metal ion with the 

MCA.  However, this flow rate is so small that it is not appropriate for IEC.  The 

time needed to separate a series of metals at this flow rate would be 6-7 hours.  

Not only would the experimental time be unreasonable, but axial diffusion may 

excessively broaden peaks. 

After the design and testing of the low volume flow cell, a discussion 

about flow cell volumes in a handbook of radioactivity was found.  In this piece 

of literature it is shown that the optimal flow cell volume for a chromatographic 

detector is 0.1 to 0.2 times the volume of the smallest chromatographic peak[139].  

For the experiments detailed in this chapter the optimal flow cell volume would 

be between 30 and 60 μL.  Therefore the large volume (150 μL) flow cell (D) and 

the intermediate volume (75 μL) flow cell design (C) were above an optimal 

volume and significant tailing was present in the chromatographic peaks.  The 

new 10 – 5 μL flow cell, while eliminating washout problems, is smaller than an 

optimal volume.  Additionally, the reference states that sensitivity can be 

increased by decreasing flow rate which was demonstrated by Figure 23 and that 

increasing the size of the flow cell will increase sensitivity. 

The experiments detailed in the final section of this chapter concluded 

with the flow cell problem.  Flow cells with volumes of 150-75 μL for MCA 

chromatographic detectors provided good sensitivity, but the chromatographic 

peaks showed a large amount of tailing.  A smaller volume flow cell (10-5 μL) 
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designed to eliminate peak tailing decreased the sensitivity of the system so much 

so that it could only be recovered by decreasing the flow rate.  Additionally, at the 

decreased flow rate, needed to regain sensitivity, the experimental time is too long 

and the separation may not even be maintained due to diffusion.  Future work will 

involve new flow cell designs and the testing of the new designs. 
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CHAPTER 4: DIFFERENTIALLY POLYMER COATED 
MICROCANTILEVER ARRAYS FOR GAS PHASE SENSING 

AND IDENTIFICATION 
 

4.1 INTRODUCTION 
 
 For years sensitive chemical waste has been stored in barrels either buried 

in the earth or stored in warehouses.  These barrels however have presented 

several environmental problems because of leaching of the chemicals inside of the 

barrels into the environment.  The chemicals stored in the barrels can react with 

each other, creating byproducts that are even more dangerous than the original 

materials stored.  Many of these chemicals are somewhat volatile and therefore 

present in detectable levels in the gas phase.  The need for innovative sensors to 

allow for detection of chemicals and byproducts present in the barrels and to 

selectively detect each component present in the barrel mixture is increasing.  The 

broad range of chemicals possibly present in these barrels necessitates that the 

chemical sensor be selective in its detection.        

 Not only have MCs been used for metal ion detection in the liquid phase, 

but, MCs coated with polymers have proven to be adequate sensors for gas phase 

applications[103, 140-143].  The small size of MCs offers sensitivity generally a 

couple orders of magnitude higher than other analyte responsive sensors, 

including QCM, FPW oscillators, and SAW sensors[101].  Other advantages have 

been mentioned in previous chapters.   

As analyte diffuses into the polymer RPs coated on one of the MC surface, 

intermolecular forces change causing differential surface stress in the MC.  

Differential stress induced by analyte interaction on one side of the MC causes the 
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cantilever to bend.  Bending of the MC (tip deflection, zmax) is governed by 

Stoney’s equation[29] previously described. 

 In this study, a large number of gas phase components (hydrogen, carbon 

dioxide, ethanol, methane, methylene chloride, trichloroethylene, acetone and 

methanol) possibly present in these storage barrels were introduced to a MC 

sensor array.  The MCA consisted of several vapor deposited polymeric RPs with 

thicknesses between 150 and 650 nm.  In this chapter, the chemical selectivity by 

virtue of the large number of RPs coated on the array was evaluated using pattern 

recognition algorithms.  The ability of the pattern recognition algorithm to 

identify and quantify the analytes injected into the system was examined.  Various 

environmental parameters were also altered to determine if the change would 

impart some additional environmental selectivity to the system.  Parameters of the 

flow cell environment such as temperature and humidity were altered to 

determine if they would enhance the selectivity of the MCA toward the gas phase 

analytes.  Additionally, a diffusion controlled analyte introduction technique was 

studied to determine if it would enhance the selectivity of the system.   

4.2 EXPERIMENTAL 
 

Experiments were performed using commercially available silicon arrays 

(sixteen cantilevers per array) of MCs having dimensions of the MCs used 

previously. The metals deposited on the MCs were obtained from Kurt J. Lesker, 

Gatewest, and Alfa Aesar Co., respectively, at 99.9% purity.  Chemicals used as 

RPs for each cantilever were all purchased from Aldrich.  Analyte gases were 

either purchased in tanks from Airgas or the headspace was drawn through a vial 
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with a septum from the chemical in liquid form purchased from Aldrich.  The 

cantilevers were coated as is depicted in Table 6.     

For measurements, the cantilevers were first cleaned as described 

previously.  The process of creating the nanostructured MCs having a dealloyed 

surface is described in detail elsewhere[77].   In order to create gold 

nanostructured surface on one side of the cantilevers, a composite metal coating 

was created using PVD in vacuum from tungsten boats (Cooke Vacuum Products, 

model CE 301, South Norwalk, CT).  Cantilevers that are nanostructured by this 

dealloying process have been shown to provide substantially larger responses than 

simple smooth surface cantilevers9, 29. 

Different chemical coatings RPs were thermally evaporated 

correspondingly on different cantilevers (one coating per cantilever) using the 

PVD approach2,18.  The PVD procedures were carried out in a vacuum chamber 

with resistively heated sources at a pressure of approximately 1×10−6 torr. 

Alumina crucibles with tungsten heaters were used for evaporation of the RPs. A 

150µm wide slit was used to selectively expose a single 100µm wide cantilever to 

accomplish our goal of depositing different RPs on each single cantilever. FT-IR 

studies were carried out on a Bomem FT-IR by collecting spectra from silicon 

wafers which were coated by PVD with RPs used in the study.  Gel permeation 

chromatography (GPC) experiments were also carried out to determine the 

molecular weight distribution of the vapor deposited polymer.  The GPC system 

consisted of a Knauer K-501 pump with a Knauer K-2501 UV detector and a 

Knauer K-2301 RI detector.  The column was a 60 cm long stainless steel column  
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Table 6 RPs used for gas phase sensing array 
 

Name Abbreviation
Thickness 

(nm) 
Poly(diphenoxyphosphazene) PDPP 300 
Dealloyed DA 50 
Nafion Nafion 400 
4-tert-Butylcalix[6]arene Cal-6 400 
3-Amino propyl triethoxy silane APTES 400 
4-tert-Butylcalix[4]arene Cal-4 400 
Heptakis(6-O-tert-butyldimethysilyl-2,3-di-O-
acetyl)-β-cylclodextrin AcβCD 300 
Heptakis(6-O-tert-butyldimethysilyl-2,3-di-O-
acetyl)-β-cylclodextrin AcβCD 300 
Tetrabutylammonium p-toluenesulfonate TBATS 400 
Tetrabutylammonium p-toluenesulfonate TBATS 150 
Copper phthalocyanine CuPC 400 
Poly(ethyleneimine) PEI 600 
N,N,N',N'-Tetrakis(2-
hydroxypropyl)ethylenediamine THPED 400 
N,N,N',N'-Tetrakis(2-
hydroxypropyl)ethylenediamine THPED 650 
Poly(isobutylene) PIB 300 
Poly(epichlorohydrin) PECH 300 
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with a 105 Ǻ linear and a 100 Ǻ PS-SDVB crosslinked packing.  The deposition 

rate and the thickness of the resulting films were measured using the PVD 

system’s QCM. The rate was varied from 0.05 to 0.1 nm s−1 for different phases.  

RP coatings of approximately 150–650 nm thickness were deposited. 

MCAs were mounted in a brass flow cell in an optical system18 that has 

the physical arrangement described previously in chapter 3.  The brass flow cell 

has a total volume of 150 µl.  The cell has one port for carrier gas/analyte 

delivery, one outlet port, and a glass window to facilitate the observation of 

cantilever deflection.  Modifications were made to the original brass flow cell by 

extending the back of the flow cell.  The extended portion of the flow cell allowed 

for the incorporation of tubing used for temperature control.  A hole was drilled in 

the extended portion of the flow cell to allow insertion of a J type thermocouple to 

monitor the temperature of the array flow cell used in these experiments. Also, the 

temperature of the brass flow cell was controlled by flowing cooled or heated 

water through stainless steel tubes that were connected to the flow chamber in the 

extended portion of the cell. The water flow was controlled by a simple peristaltic 

pump.  

Diffusion controlled injection experiments were conducted by attaching 

the inlet and outlet of the flow cell to bags containing gases.  The bag attached to 

the inlet contained background helium, while the bag attached to the outlet 

contained the analyte of interest.  The analyte bag was isolated from the MCA 

flow cell by a valve.  At the desired point in an experiment the valve could be 
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opened to allow for diffusion controlled transport of the analyte from the bag to 

the flow cell. 

Cantilever deflections were monitored using a beam bending technique 

similar to that used in AFM. A beam of laser light from an array of vertical cavity 

surface emitting lasers (VCSELs) was focused onto the tip of each MC and the 

reflected beam was captured and monitored by a single PSD (PSD)18.  A single 

lens was used to focus an array of VCSELs (Avalon Photonics, 850nm, 5mW) 

such that the beam from each VCSEL was focused onto a single corresponding 

cantilever (12 VCSELs onto 12 cantilevers). The deflection of the cantilever 

resulted in a corresponding motion of the reflected beam as monitored by the 

PSD.  An in-house created LabView described previously controlled the system.  

4.3 RESULTS AND DISCUSSION 
 
 The response of an MC to an analyte cannot be said to be an information 

rich response like that of a vibrational spectrum.  For MCs to become more 

widely used methods must be developed to increase the selectivity of the MC 

sensor system.  Enhancement of selectivity of the system can be accomplished by 

using the MCs in an array format.  A PVD approach was used to coat each 

cantilever in the array with a different polymer.  A 150 μm slit was used to expose 

one 150 μm cantilever to the vapor deposition at a time.  In an effort to 

demonstrate that this could be accomplished FT-IR spectra were collected from 

silicon wafers that were exposed to a deposition of the polymers used as RPs in 

this study.  Figure 24 shows the FT-IR spectra of PDPP with a reference PDPP 

sample and with a vapor deposited PDPP onto a silicon wafer.  In addition to FT- 
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Figure 24 FT-IR spectra of polymer PDPP before and after vapor deposition on a 
silicon wafer. 
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IR spectra, GPC measurements were made on the vapor deposited polymers to 

determine their average molecular weights.  The GPC measurements showed that 

as the RPs underwent vapor deposition, they were deposited as small molecular 

weight oligomers rather than as the bulk polymer.   

After characterization of the vapor deposited RPs, responses of the MCA 

to injections of different gas analytes were measured.  Each RP has different 

chemical properties and will therefore interact differently with each gas phase 

analyte.  A MCA with a large number of RPs has a large number of unique 

interactions.  Each of these interactions can be combined to give an analyte 

specific signature.  Figure 25 shows the analyte signature of trichloroethylene 

(TCE) over ten different RPs initially and 5 weeks after the initial measurement. 

The more diverse the analyte-RP interactions and the more RPs comprising the 

array, the more distinct the analyte signature will be and larger the degree of 

chemical selectivity.  The technique is not as inherently selective as a technique 

like vibration spectroscopy or chromatography.  Therefore, the high degree of 

chemical selectivity provided by the use of arrays must be taken advantage of in 

MC sensors.  The chemical selectivity supplied by using the sensors in the array 

format in combination with pattern recognition algorithms represents a pathway to 

enhancing the selectivity of the system.  The pattern recognition algorithms 

provide the experimentalist with the ability to analyze the responses of each RP of 

the MCA and combine all of the information for identification of the analyte.   

The system studied to determine the power of MCAs combined with 

pattern recognition algorithms was the carbon dioxide/hydrogen system.  Instead 
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Figure 25 Response of 10 RP coated MCs to 10% TCE in a He background gas 
(initially and at 5 weeks). 
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of injecting the gas analyte into the flow cell using a syringe pump or by 

diffusion, gas was injected with a fixed loop injector.  The fixed loop injector 

enabled injection of a fixed amount of sample in a confined sample plug.  The use 

of the fixed loop injector increased the reproducibility of sample injections 

leading to more reproducible results.  Samples composed of 50-50 mixtures of 

hydrogen and helium and carbon dioxide and helium were injected into the flow 

cell housing the MCA.  The two starting samples were then mixed to create 

samples having a range of hydrogen and carbon dioxide concentrations.  The data 

collected from these experiments was given to a collaborating researcher Dr. 

Richard Archibald, who combined the data with pattern recognition algorithms.  

In the pattern recognition algorithm a leave-one-out cross validation test was 

performed on ICA features using a radial basis function SVM.  Table 7 displays 

the results of the pattern recognition algorithm as it was presented with data from 

array responses for mixtures of hydrogen and carbon dioxide.  The pattern 

recognition algorithm performs very well when the amounts of each gas in the 

mixture are very different (i.e. 9:1).  However, when the amounts of gases in the 

mixture are similar, the pattern recognition algorithm does not perform as well.  

The pattern recognition algorithms developed by Dr. Archibald[115] when 

presented with single component analyte gases were able to not only identify the 

analyte gas, but were also able to identify the concentration of each gas phase 

analyte with an error of 8%. 

In addition to the chemical selectivity imparted by the use of MCAs, it 

was thought that adjustment of environmental parameters may offer another  
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Table 7 Predicted vs. actual concentration for gas mixture. 
 

Predicted vs. actual concentration in the 
mixture of CO2 and H2 

Actual 
Mixture of 
CO2 and H2 

Predicted mixture of CO2 and 
H2 (mL/min) 

0.9:0.1 0.8947:0.0843 
0.8:0.2 0.8548:0.1000 
0.7:0.3 0.6279:0.3202 
0.6:0.4 0.4946:0.4469 
0.5:0.5 0.2603:0.5902 
0.4:0.6 0.4369:0.5336 
0.3:0.7 0.2603:0.5902 
0.2:0.8 0.3017:0.7628 
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method of enhancing selectivity of the system.  Therefore, experiments were 

conducted to determine if some additional environmental selectivity could be 

imparted to the system.  The first experiments conducted aimed at imparting 

environmental selectivity to the system involved alteration of the environmental 

(flow cell) temperature.  In the case of a two gas analyte system it was anticipated 

that a reduction in environmental temperature (-20º C) would cause the analyte 

gas with the lower vapor pressure to condense to a more liquid like analyte while 

permitting the gas with the higher vapor pressure to remain in the gas phase.    

Thus, the response of the polymer coated cantilevers to the lower vapor pressure 

gas at lower temperatures would decrease and the response to the higher vapor 

pressure gas would remain the same.  The controlled manipulation of the analyte 

vapor pressure through environmental temperature change was thought to be a 

pathway to generate selectivity in the responses of the MCA.  This temperature 

generated selectivity could then be extrapolated to each of the gas phase analytes 

comprising the study.  To test the temperature controlled selectivity concept 10% 

carbon dioxide and hydrogen gas in a helium background gas were injected 

separately into the flow cell housing the MCA.  MCA responses were measured 

for carbon dioxide and hydrogen at room (25 ºC), heated (45 ºC), and cooled (5 

ºC) temperatures.  Each gas showed an increase in the response as the 

environmental temperature was decreased.  The difference in the room 

temperature and cooled responses for hydrogen and carbon dioxide were both 

calculated.  The calculated differences were then plotted and the ratio of the 

hydrogen response change to the carbon dioxide response change was calculated 
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(Figure 26).  The increase in response of both gases suggested that as the 

environmental temperature decreased the gases began to condense onto the RPs of 

the MCA giving a larger response for each gas.  For the same reason, as the 

temperature of the flow cell environment was increased to 45 ºC the magnitude of 

response to carbon dioxide and hydrogen decreased for each RP.  Of course 

temperature may also affect the response characteristics of the system aside from 

a partitioning effect.   

The response ratios were almost constant across each phase comprising 

the array.  The constant response ratio demonstrated that the added selectivity to 

the system in environmentally related and not related to RP.  Therefore, 

environmental temperature changes do impart some additional selectivity to the 

array.   

Environmental temperature changes did impart some additional selectivity 

to the system.  Therefore, other another environmental parameter was studied to 

determine if it would influence the selectivity of the MCA.  It was thought that by 

increasing the humidity, as difficult as it is to control, of the system the polarity of 

the background gas would increase, thereby enhancing the selectivity of the 

system.  Once again the MCA responses to 10% carbon dioxide and hydrogen 

gases in helium were studied to understand the effect of humidity on the system.  

Humidity was added to the system by spiking each gas phase analyte with 20% by 

volume water vapor.  Figure 27 demonstrates the impact that humidity has on the 

response of a THPED coated cantilever to hydrogen and carbon dioxide.  In the 

humidity experiments the direction of bending of the cantilever changed from a  
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Figure 26 Temperature effects on response of THPED coated cantilever to 
hydrogen and carbon dioxide. 
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compressive response under normal conditions to a tensile response.  The tensile 

response occurs when the sensing phase contracts rather than expands.  The 

tensile response magnitude for carbon dioxide was 7 times larger than that of 

hydrogen when humidity was added to the system.  However, the response 

appears to be due to some polar gas phase components (possibly water) leaving 

the polymer sensing layer and partitioning into the now more polar gas phase.  

The exiting gas causes the polymer to shrink rather than swell and a tensile 

response results.  The changes in MCA response resulting from humidity 

fluctuations appear not to be related to the analyte gases, but to some other gas 

phase component (possibly water vapor).  Therefore, a humidity change as a 

means of imparting selectivity to the system is not a promising pathway.  In fact, 

the lack of control of humidity becomes a complication rather than a benefit.    

Another approach to imparting selectivity to the MCA was by using 

diffusion controlled transport of the analyte gases of interest.  Each gas phase 

analyte has a different diffusion coefficient and therefore will be transported at a 

different rate across a given distance.  It was thought that each gas would have a 

characteristic transport time, based on equation 10 relating molecular weight of 

the analyte to its diffusion coefficient.   

                                 
))((

001.0
23/13/1

2/175.1

BA

r
air VVP

MTD
+

=                     (10) 

Where Dair is the diffusion coefficient in air, T is the temperature in 

Kelvin, Mr is a function of the molecular weight of the analyte, P is the pressure 

in atmospheres, Va is the volume of the air, and Vb is the volume 
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of the analyte of interest.  The flow cell housing the MCA sensor was put in an 

isolated system with a bag filled with an analyte gas and a valve separating the 

bag and a transfer line to the flow cell.  At the beginning of the experiment the 

valve was opened to allow for diffusion controlled transport of the analyte gas 

into the flow cell.  In preliminary experiments the hydrogen gas reached the MCA 

much faster than the carbon dioxide, which was expected.  According to 

preliminary experiments, the diffusion controlled transport appeared to offer good 

pathway toward enhancing the selectivity between the gas analytes comprising the 

study.  However, after further experiments it was evident that pressure problems 

existed in the system.  The diffusion controlled transport times over a given 

distance for repeated experiments changed significantly for both hydrogen and 

carbon dioxide.  The large discrepancies in transport times were thought to be 

caused by pressure fluctuations in the system.  The system was believed to be 

isolated and the transport of analyte gases totally controlled by diffusion.  

However, the system was in fact not isolated and other factors were affecting gas 

transport.  The vulnerability of the experimental setup to external interference 

discouraged further experiments involving diffusion controlled transport.  

However, in a more controlled isolated system diffusion controlled transport of 

analytes as a pathway to increase the selectivity of the system would be viable.   

 In conclusion, MCA responses combined with pattern recognition 

algorithms proved to be an excellent method of generating selectivity to the 

system.  Not only was analyte identification a possibility with pattern recognition 

algorithms, but analyte concentration could also be distinguished.  Environmental 
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changes such as temperature and humidity in the carbon dioxide/hydrogen system 

demonstrated the ability to impart some additional selectivity to the system in the 

case of temperature changes.  However, humidity changes were hard to control 

and a change in humidity appeared to impact other gases phase components 

masking the analyte response.  The diffusion controlled transport system was very 

susceptible to external interferences.  The external interferences, such as pressure 

changes, did not allow diffusion controlled transport to be used as a means of 

generating selectivity in regard to gas phase MCA experiments.  However, with a 

more isolated system, diffusion controlled transport could represent an additional 

pathway to increasing the selectivity of the system.             
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CHAPTER 5: FACILE HYPHENATION OF GAS 
CHROMATOGRAPHY AND A MICROCANTILEVER ARRAY 

SENSOR FOR ENHANCED SELECTIVITY 
 

Chapter 5 is an adaptation of a research article Anal. Chem. 2007, 79, 364-

370.  The article demonstrated that arrays of polymer coated cantilevers could be 

made these arrays could be used as detectors for GC.  The separation technique 

before detection greatly enhanced the selectivity of the system. 

5.1 INTRODUCTION 
 

Volatile organic compounds (VOCs) may be responsible for the building 

related illnesses of 30 to 70 million workers in the United States[144].   MC 

sensors have been applied to the selective detection of individual components of 

sample VOC mixtures[116].  However, complex mathematical algorithms must 

be applied to the sensor responses to determine whether or not a component was 

present and in what amounts.  Therefore, a more straightforward method of 

elucidating single components in a sample mixture would be of interest.   

The small size of MC sensors offers sensitivity generally a couple orders 

of magnitude higher than other analyte responsive sensors, including QCM, FPW 

oscillators, and SAW sensors[101].  Other advantages include the ability to be 

integrated with on chip circuitry, an ability to be used as an array, and low cost. 

As analyte comes in contact with RPs on one of the MC surfaces, 

intermolecular forces cause surface stress changes on the coated side of the MC.  

Differential stress induced by analyte interaction on one side of the MC causes the 

cantilever to bend.  Bending of the MC (tip deflection, zmax) is governed by 

Stoney’s equation[29] 
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2

max 2

3 (1 )
Et

l vz −
= Δσ   (5) 

where v and E are, respectively, the Poisson ratio and Young’s modulus for the 

cantilever, t is the thickness of the MC, l is the cantilever effective length, and �σ  

is  analyte-induced differential surface stress (Δσactive (i.e., MRP) side – Δσpassive side). 

Early MC sensors generally were comprised of one cantilever coated with 

one RP[24, 32, 102-109, 111, 145].  More recently, MCAs have been developed 

with many cantilevers in an array coated with different RPs[36, 110, 116, 146, 

147].  However, as the number of MCs used in an array increases, the complexity 

of the array response patterns increases as well.  In an effort to deal with 

increasing complexity, pattern recognition approaches to data mining have been 

used.  Pattern recognition approaches based on linear discriminant analysis[148], 

principal component analysis (PCA)[149], or artificial neural networks (ANNs) 

have been applied to sensor responses[149].   Shaffer et al. compared a test of 

seven different pattern recognition algorithms using responses of SAW 

sensors[150].  We have employed ANNs to MCA responses to facilitate analyte 

recognition[116] and, more recently, employed a combination of independent 

component analysis and ANNs for the same purpose[115].  The complexity of 

array responses to analyte mixtures has exposed, up to now, the inability of ANNs 

to elucidate each component of relatively complex mixtures.  One such class of 

mixtures that can cause difficulty for ANNs when attempting multi-component 

identifications using MCA responses are the VOCs.   
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  Several researchers have utilized pre-sensor separation in detection of 

complicated mixtures[151-153].  In particular, Zellers et al. performed extensive 

work in developing a sophisticated yet portable gas chromatograph with tunable 

retention and detection with surface acoustic array sensors[153].  Tunable 

retention was accomplished by incorporating two separation columns in tandem 

with scheduled stop-flow intervals in the first column and independent 

temperature programming.  The portable gas chromatograph surface acoustic 

array sensor was capable of separating and detecting numerous different 

components in a mixture. 

In this chapter, the straightforward coupling of a standard gas 

chromatograph to a MCA sensor is demonstrated.  To our knowledge this report 

represents the first report of the GC-microcantilever array detector (MCAD) 

hyphenation.  Calibration studies to determine the performance of the MCA 

response to VOCs separated by GC were conducted.  In addition to calibration 

studies, a PCA evaluation and operational parameter studies involving column 

flow rate, column temperature, and array cell temperature were performed.  Peak 

area and peak height reproducibility were determined for one of the VOC 

mixtures with several different sensing phases in the MCA.  A discussion of the 

influence of MCAD on peak integrity is also presented. 

5.2 EXPERIMENTAL 
 

Experiments were performed using commercially available silicon arrays 

(sixteen cantilevers per array) of MCs having dimensions 400 µm length, 100 µm 

width, and approximately 1 µm thickness (Mikro Masch Co., Sunnyvale, CA). 
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Chromium, gold, and silver metals deposited on the MCs were obtained from 

Kurt J. Lesker, Gatewest, and Alfa Aesar Co., respectively, at 99.9% purity.  

Chemicals used as RPs for each cantilever were all purchased from Aldrich and 

are listed in Table 8. VOC analyte mixtures were prepared using acetone, ethanol, 

TCE, methanol, acetonitrile and pentane as the solvent, purchased from Aldrich 

each of which were 98.5% pure or greater.   Although, 12 cantilevers responses 

are monitored and 10 different RPs comprise the MCA, the focus of this study 

included only six good VOC-responding cantilevers.  One of these cantilevers is 

the simple dealloyed surface MC (see below). 

For measurements, the cantilevers were first cleaned in a piranha bath 

(75% H2SO4, 25% H2O2) for 30 minutes [Caution: piranha solution reacts 

violently with organics]. The cantilevers were then thoroughly rinsed in deionized 

water. The process of creating the nanostructured MCs having a dealloyed surface 

is described in detail elsewhere[146].  In order to create gold nanostructured 

surface on one side of the cantilevers, a composite metal coating was created 

using PVD in vacuum from tungsten boats (Cooke Vacuum Products, model CE 

301, South Norwalk, CT). Evaporation of a 5 nm chromium adhesion layer was 

followed by evaporation of a 15 nm gold layer and, without stopping the 

evaporation of gold, by co-evaporation of gold and silver until a composite Au/Ag 

film of ~50 nm thickness was formed.  Both the deposition rate and resulting 

coating thickness were monitored using a QCM. Silver was subsequently etched 

out of the composite film by placing the MCs in an aqueous solution of 0.2% w/v  
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Table 8  List of compounds used as RPs 
 
Phase Abbreviation 
3-Amino propyl triethoxy silane APTES 
Copper phthalocyanine CuPC 
Methyl-β-cyclodextrin MeβCD 
N,N,N',N'-Tetrakis(2-
hydroxypropyl)ethylenediamine THPED 
Tetrabutylammonium p-toluenesulfonate TBATS 
Dealloyed DA 
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HAuCl4 for 2-3 minutes.  Subsequently, the MCs were rinsed with copious 

amounts of water after etching. Cantilevers that are nanostructured by this 

dealloying process have been shown to provide substantially larger responses than 

simple smooth surface cantilevers[32, 112]. 

Different chemical coatings RPs were thermally evaporated 

correspondingly on different cantilevers (one coating per cantilever) using the 

PVD approach[116, 146].  The PVD procedures were carried out in a vacuum 

chamber with resistively heated sources at a pressure of approximately 1×10−6 

torr. Alumina crucibles with tungsten heaters were used for evaporation of the 

RPs.  A 150µm wide slit was used to selectively expose the single 100µm wide 

cantilevers to accomplish our goal of depositing different RPs on each single 

cantilever.  The deposition rate and the thickness of the resulting films were 

measured using the PVD system’s QCM.  The rate was varied from 0.05 to 0.1 

nm s−1 for different phases.  RP coatings of approximately 350–450 nm thickness 

were deposited. 

Figure 28 shows the different components of the instrumentation used in 

the hyphenated technique as a schematic representation.  MCAs were mounted in 

a brass flow cell in an optical system[146] that has the physical arrangement as 

shown in Figure 28. The brass flow cell has sufficient thermal mass to permit 

uniform temperature control and the total volume of the flow path through the cell 

is approximately 150 µl. No attempt to decrease the flow cell volume has been 

made in this initial proof of concept report of GC-MCAD.   
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Figure 28 Illustrations detailing the ease of instrumental hyphenation of a simple 
gas chromatograph with existing optical detection system used for cantilever 
measurements. The inset (lower left) is a CCD image of an array of MCs with 
VCSEL reflection off the fourth cantilever from the right. 
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Considering the limit of the range of cantilever motion (zmax in Equation 5) of well 

less than 10 μm and physical size of the MCA, a reduced dimension version of 

the flow cell could reduce the flow cell volume to 100 nL or less.  The cell has 

one port for carrier gas/analyte delivery, one outlet port, and a glass window to 

facilitate the observation of cantilever deflection. A J type thermocouple was used 

to monitor the temperature of the array flow cell used in these experiments. Also, 

the temperature of the brass flow cell was controlled by flowing cooled or heated 

water through stainless steel tubes that were connected to the flow chamber in the 

extended portion of the cell. The water flow was controlled by a simple peristaltic 

pump. Cantilever deflections were monitored using a beam bending technique 

similar to that used in AFM. A beam of laser light from an array of vertical cavity 

surface emitting lasers (VCSELs) was focused onto the tip of each MC and the 

reflected beam was captured and monitored by a single PSD (PSD)[146].  A 

single lens was used to focus an array of VCSELs (Avalon Photonics, 850nm, 

5mW) such that the beam from each VCSEL was focused onto a single 

corresponding cantilever (12 VCSELs onto 12 cantilevers).  The deflection of the 

cantilever resulted in a corresponding motion of the reflected beam as monitored 

by the PSD.  An in-house created LabView program controlled a multiplexing 

scheme that allowed the VCSELs to be activated individually so that one MC was 

illuminated at a time and the motion of all MCs was monitored by the single PSD.  

A GOW-MAC Series 350 gas chromatograph equipped with a 20% 

carbowax 20 M column was used for separations of VOC mixtures before 

introduction to the MCAD.  This is a very basic GC that is often used in academic 
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teaching laboratory settings.  A thermal conductivity detector (TCD) comprised of 

4 Rhenium-tungsten elements served as the integrated GC detector.  The injection 

port and detector temperatures were maintained at 240°C and 145°C respectively.  

Column temperatures were altered between separations in the range of 90 to 

130°C and remained static during each separation.    

Coupling of the GC and the MCAD was accomplished by connecting 

heated tubing from the outlet of the GC to the inlet of the MCAD flow cell.  The 

connecting tubing was 20 cm of narrow-bore 1/16 inch O.D. PTFE with a total 

volume (including connectors) of less than 50 μL.   Throughout the experiments, 

a constant flow of helium carrier gas was maintained through GC and the flow 

cell, typically at a rate of 35-65 mL/min. Analyte flow was controlled by the gas 

chromatograph flow rate adjuster.  

An in-house created LabView program controlled a multiplexing scheme 

that allowed the VCSELs to be activated individually so that only one cantilever 

was illuminated by one VCSEL at a time. At the beginning of each cycle, VCSEL 

#1 was activated illuminating the corresponding cantilever #1. The motion of the 

reflected beam was monitored by the single PSD, and the detector output signal 

was sampled by an A/D converter at a rate of 1 kHz. To minimize noise, 50 

samples were taken and the average value was recorded. The sequence was then 

repeated for VCSEL/cantilevers #2 through #12. The entire cycle of measuring 

and recording all 12 MCs (recall only 6 used for VOC analyses) takes less than 

one second; therefore a delay was added so that the cycles begin at one second 
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intervals. VCSEL control and data acquisition I/O were performed using a 

National Instruments NI-6014 DAQ card in an 800MHz Pentium III PC. 

The data collected by the LabView program was transferred to an excel 

spreadsheet.  The data was then plotted using excel to assist in determination of 

chromatographic parameters such as those listed below.  Chromatographic 

retention and peak parameters were computed manually because integration 

software was not readily available.  For example, efficiency (plate count, N) was 

calculated using N = 5.5 (tR/w½)2 where tR is the retention time of the peak and 

w1/2 is the peak width at half height.  Also, peak asymmetry (As) was calculated 

using As = B/A where B is peak center to peak tail at 10% peak height and A is 

peak front to peak center at 10% peak height. 

In order to assess whether these different MCA response patterns enable 

analyte discrimination and quantification, a PCA[154-157] was utilized. Our PCA 

algorithm is based on a singular value decomposition (SVD)[158, 159], which 

also outputs a set of singular values. In this proof-of-concept approach these 

singular values serve as figure of merit to determine the number of linear 

independent patterns contained in a set of response patterns obtained in this work. 

The number of singular values ≠ 0 indicates the rank of the matrix containing the 

response vectors and thus the number of linear independent patterns. Due to 

measurement noise all singular values will be larger than zero and it needs to be 

determined later which are ≈ 0. The inclusion of repeated measurements ensures 

the presence of linear dependent information which in turn allows an assessment 

of the level of a singular value ≈ 0 (“noise indicator”).  Chemometric 
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computations were performed with software written in-house utilizing the Intel 

C++ compiler (version 9.1.038) for Linux. 

5.3 RESULTS AND DISCUSSION 
 

Figure 29 details the response magnitude of several differentially coated 

levers in the MCA to four analytes post GC separation.  The response magnitudes 

demonstrate a great deal of diversity (molecular recognition contrast) from 

sensing phase to sensing phase and analyte to analyte.  APTES and dealloyed 

MCs show no response to TCE, whereas TCE gives the largest response with the 

THPED coated lever.  Also, the CuPC sensing phase responds to pentane by 

causing the MC to bend in the opposite direction of all other analytes.  The larger 

amount of diversity in MCA response magnitudes bode well for elucidation of 

more complex VOC mixtures possibly containing co-eluting peaks.  Our prior 

research explored the advantages of combining differentially coated MCAs with 

ANNs for detection of certain VOCs, singularly and in binary mixtures[116].   

In order to determine whether there is sufficient information in the array 

response patterns of the figure to identify the four components if, for instance, 

they were not subjected to a separation, a PCA was performed.   As mentioned 

above, this analysis is based on singular values determined from a PCA of the 

matrix containing 16 response patterns (four pure analytes repeated four times  

each). Since there are six cantilevers and 16 vectors this data matrix is of 

dimension 6 x 16 and six = min(6,16) 5 singular values are returned and analyzed 

for being ≠ 0 or being ≈ 0. 
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Figure 29 The response variability (selectivity) is displayed for six differentially 
RP coated cantilevers to four (acetone, pentane, TCE, and ethanol) of the test 
VOC analytes after GC separation.  With this MCAD, the deflection (static 
bending) of the tips of the 400 μm long cantilevers is approximately one nm 
bending per mV of PSD output (responses are chromatographic peak heights).  
The error bars correspond to one standard deviation for four runs used to generate 
the bar graph. 
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As shown in Figure 30A the four analytes only result in three singular values that 

are clearly ≠ 0. Hence, three analytes in the quaternary mixture were detected for 

sure; the fourth is questionable. 

In the next step it is determined which analyte could possibly not be 

discriminated from a mixture of all four. For this purpose, one analyte after the 

other was removed from the PCA analysis. If the removed analyte reduces the 

number of relevant (≠ 0) singular values by one, a linear independent pattern has 

been excluded. If, however, excluding a certain analyte does not change the 

number of relevant singular values, this analyte does not add a linear independent 

pattern to the data set. As shown in Figure 30B excluding acetone does not 

change the singular values as much as compared to the other analytes (see *); 

thus, the acetone response pattern can be a linear combination of the other three.  

By means of a multivariate least squares regression[160-162] the coefficients of 

this linear combination are estimated; for this calculation the averaged pattern 

responses (Figure 29) have been used.   From this analysis it appears that the array 

response (AR) for acetone can be fairly accurately modeled as follows by 

equation 11. 

             ARacetone  =  -6.846x10-2 ARpentane  +  0.3225 ARethanol  +  0.4271 ARTCE 

 (11) 

       The significance of this PCA analysis is that a MCA of the complexity 

 

 



 126

 

 

 

  

 

Figure 30 [A] Singular values obtained from the full calibration set, which 
contains four repeated measurement of four pure analytes; goal of this analysis is 
to determine how many linear independent patterns are present. Each singular 
value clearly ≠ 0 indicates a linear independent pattern – noise is represented by a 
singular value ≈ 0.  [B] The number of relevant singular values obtained from 
samples excluding either ethanol, TCE or pentane is decreased, i.e. the exclusion 
of one of these analytes reduces the number of linear independent signal patterns. 
With and without acetone included, however, the singular values are almost equal 
(*). 
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used in this work (six different MCs with different RPs) could deal with a ternary 

mixture of the four VOCs studied, but the quaternary mixture may result in 

misclassification or concentration errors when performing qualitative and 

quantitative analysis.  Given that minor co-elution often occurs even in properly 

designed GC experiments, but such massive co-elution is very unlikely (actually 

these four VOC are completely resolved in this work), the significance of the 

hyphenation of GC with a MCAD is clearly highlighted. 

Figure 31A shows the MCAD response to a separation of a VOC mixture 

containing methanol and acetonitrile, which was not as thoroughly studied as the 

VOC mixture containing acetone, ethanol, and TCE.  Figures 31B and 31C 

demonstrate the results of a calibration study through the response of TBATS 

coated cantilever for the latter VOC mixture.  The elution order was as expected; 

the solvent pentane (bp 36 °C) eluted first, followed by acetone (bp 58 °C), 

ethanol (76 °C), and finally TCE (88 °C).  The MCAD showed a linear response 

to concentrations of each component of the mixture over a range of two orders of 

magnitude.  However, at 750 mmol/L concentrations of analyte the calibration 

curve showed nonlinearity.  Ignoring the highest concentration, the r2 values for 

the plots are 0.995 for TCE, 0.972 for ethanol, and 0.997 for acetone.  The 

nonlinearity at higher concentrations is probably indicative of saturation of the 

RP.  The absolute limits of detection based on the 1.0 μL injection (S/N = 3) were 

7nmol, 14nmol, and 14nmol for ethanol, TCE, and acetone, respectively.  These 

are not impressive detection limits, however, in an optimized system it has been 

demonstrated that MC sensors can respond to gas phase aromatic  
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Figure 31 [A] A separation of a VOC mixture containing methanol and 
acetonitrile in pentane. [B] Examples of GC-MCAD chromatograms 
(concentration based response of TBATS coated cantilever) at two different 
injected amounts (0.1 and 0.5 μmols). [C] Calibration curve based on the 
response curve of TBATS coated cantilever showing the responses are linear over 
the range of concentrations studied from 50mmol/L to 500mmol/L with r-squared 
values of 0.995, 0.972, and .997 for (♦) TCE, (■) Ethanol, and (▲) Acetone 
respectively. 
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compounds in sub-ppb concentrations and absolute masses at the picogram or low 

levels[101].  The potential for this sensitivity is therefore available in this system, 

but several conditions need to be optimized from this initial proof of concept 

configuration.  For example, no effort was made in this initial work to optimize 

responses by optimizing the thickness of the coating on the cantilever or 

improving the nanostructuring procedure, which is known to enhance 

responses[31]. Additionally, measures such as thinning the MC or cooling the 

flow cell (see below) could be taken to improve the sensitivity of the MCA 

toward each analyte.   

Reproducibility studies of the sensor array response for peak height and 

area were conducted.  The RSDs for peak heights and areas for each analyte over 

several different sensing phases are included in Table 9.  RSDs for peak height 

and area demonstrate that the MC sensor array responds reproducibly over a 

number (n = 4) of injections during intra-assay studies. As expected, less 

reproducibility was demonstrated in the inter-assay studies, which represents 

responses compiled over a 3-day period.  Although long-term reproducibility was 

not studied in this proof of concept, our other studies with this same MCA system 

and similar phases has demonstrated good long-term reproducibility[146].  

While the effects of changing column temperature in GC are widely 

established, the determination of how these changes would impact the MCAD 

response is of interest.  Figure 32A displays the response of a single TBATS 

coated lever in the MCA sensor at three separate column temperatures 90°C, 

105°C, and 130°C to a mixture containing only acetone and  
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Table 9 The reproducibility (%RSD) of peak heights and peak areas are 
demonstrated for inter- and intra-day experiments.  The concentration of analyte 
for each experiment was 200 mmol/L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reproducibility of Peak Area / Reproducibility of Peak Height 
  Intra-assay reproducibility Inter-assay reproducibility 
 Pentane Acetone Ethanol TCE Pentane Acetone Ethanol TCE 
THPED 2.4/2.3 2.1/1.7 3.9/2.9 3.5/2.7 23.8/17.4 15.0/20.4 19.3/20.0 7.4/7.4 
TBATS 2.2/2.7 3.2/1.2 4.0/2.4 3.8/2.3 19.4/10.7 21.9/22.7 23.0/20.5 9.6/9.6 
MeβCD 3.7/1.8 3.6/1.9 3.6/2.5 2.2/2.9 24.3/20.6 25.2/25.6 18.9/22.1 10.8/10.8
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Figure 32 Response of TBATS coated cantilever [A] to a mixture of pentane, 
acetone and TCE at three different column temperatures (90ºC, 105ºC, and 
130ºC) and [B] to a mixture of pentane, acetone and ethanol at three different 
array cell temperatures (14°C, 21°C, and 28°C) were studied to determine the 
effects of each parameter on the detection of each compound.   
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TCE in pentane.  As expected, at the highest column temperature retention times 

are the smallest and as the column temperatures are decreased the retention times 

for each of the two compounds increased.  There was only modest effect on the 

magnitude of response as the column temperature was altered. Thus, the effects of 

the column temperature on MCAD performance seem to be minimal.   

When conducting GC experiments with hot gas flowing out of the column 

and with a MCAD connected to the end of the GC column, an important 

parameter to evaluate is temperature related changes in cantilever responses. The 

array flow cell used in these experiments not only allows for monitoring of the 

array flow cell temperature, but also control of that temperature by flowing cooled 

or heated water through a path in the brass body of the flow cell.  Figure 32B 

shows the response of a single TBATS coated lever to a VOC mixture of acetone 

and ethanol in pentane separated by GC at different array flow cell temperatures. 

The temperature was altered from room temperature (21°C) to a lower 

temperature (14°C) and to a higher temperature (28°C, as monitored by a J type 

thermocouple).  As the temperature of the array flow cell was increased to 28 °C 

the magnitude of response was decreased.  However, as the temperature was 

decreased to 14°C the magnitude of response was largest.  Other researchers have 

noted similar behavior of SAW sensors during temperature studies[163].  The 

increase in response at lower temperatures can be attributed, at least in part, to 

enhancements in the partitioning of the analyte into the RP on the active sides of 

the MCs as temperature is decreased.  There maybe very slight increases in the 

tailing of the peaks at the lowest temperature (barely discernable in Figure 32B), 
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perhaps due to condensation.  If that is an issue temperature programming of the 

flow cell itself (in addition to the column) may be beneficial. 

The successful use of MCAs for informative qualitative and quantitative 

detection in GC requires that peak integrity (efficiency, symmetry etc.) for the 

separation be maintained during the detection process.  The ability to distinguish 

between simple mixtures using MCA responses in conjunction with ANN 

methods has been established, however, and that may permit some loss in 

resolution with the MCAD approach without loss in the value of the detection 

approach.  Peak volume issues are lessened for this initial report of hyphenating 

these techniques as we used a simple GC with a ¼” id packed column.  With the 

system and conditions employed in this work, the TCD based peak volumes at the 

baseline were typically greater than 10 mL with an increase in peak volume for 

the MCAD mode of only 10-15% (data not shown).  Band dispersion due to the 

volume of the connecting tubing and MCAD flow cell (totaling approximately 0.2 

mL) should not be an issue with this large volume, packed column case.  The 

experimental evidence of only small increases in peak volume and peak symmetry 

(MCAD versus TCD) also indicates that the internal volume in the GC plumbing 

after the TCD and the wash out characteristics of our flow cell are also not serious 

problems.  The latter is discussed further below. 

Data acquisition rates can also affect the ability of the detector to maintain 

peak integrity.  The temporal widths of the peaks in this work were generally 10 

seconds or greater at the baseline and the one Hz per cantilever acquisition rate 

did not seem to produce significant digitation-like distortion of the observed 
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peaks (see chromatograms herein).   Moreover, the program delay and the number 

of A/D conversions that are averaged per datum could be easily altered (see Data 

Acquisition in Experimental Section) to increase the data acquisition rate to 10 Hz 

or greater in order to accommodate faster modes of GC separation. Whether flow 

cell volumes can be decreased and data acquisition rates increased sufficiently to 

meet the demands of small-bore capillary GC would need to be evaluated, and 

certainly would require the design of new MCAD systems. 

The influence of flow rate on peak retention and profile parameters is 

presented in Table 10 for TCE.  In addition to the digitation time issue discussed 

above, the ability of the RPs to equilibrate with the transient analyte band, and the 

translation of the induced stress caused by this into cantilever bending, are issues 

that could distort peak parameters.  Peak heights should not depend on flow rate 

unless the MC can not keep up (sorption-desorption is too slow) with the transient 

band or the separation efficiency decreases with increasing flow.  We expect to be 

in the resistance to mass transfer (C-term) dominated region of the operative van 

Deemter plate height plot under the conditions employed in this work.40  

Consequently, at the higher flow rate employed plate height is probably higher 

and analyte concentration at band center lower than at the slower flow rate.  Both 

on-column efficiency and MCAD response kinetics may be causing the slightly 

higher peak heights at the faster flow rate (Table 10).  Peak area should not 

depend on efficiency but should scale inversely with flow rate.  The higher flow 

rate is not exactly the correct factor lower in area relative to the slow flow rate  
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Table 10 The effects of column flow rate on GC-MCAD peak retention and 
profile parameters are given for TCE on two of the cantilevers 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

RP 

Flow 
Rate 

(ml/min) 

Peak 
Height 

(V) 
Peak 
Area 

Adjusted 
Retention 
Time (s) 

Efficiency 
(plates) 

Asymmetry 
Factor 

THPED 35 0.018 0.18 98 530 1
THPED 65 0.019 0.11 52 410 1.2
MeβCD 35 0.014 0.17 98 610 1.1
MeβCD 65 0.016 0.11 52 430 1.3



 136

(Table 10).   This may simply relate to the inaccuracies in the manual treatment of 

the chromatograms for these parameters, particularly with different asymmetries 

observed at the two flow rates.  The poor asymmetry factors at the higher flow 

rates (shorter temporal peak widths) could be due to some flow cell poorly swept 

areas or some pooling of RP on the MC surfaces.  The flow cell in this case is low 

enough in volume, but it was not specifically designed for this application; the 

positioning of the inlet and outlet openings to the chamber holding the MCA are 

not conducive to efficient washout.   The pooling of RP would exacerbate 

problems with slow sorption-desorption processes. 

In summary, the facile coupling of a standard GC-TCD system and a MC 

sensor array for separation and detection of VOC mixtures is demonstrated.  The 

MCA sensor displayed an excellent diversity in response of each sensing RP to 

the components of a VOC test mixture.  PCA demonstrated that without 

separation, all of the components of a four component VOC mixture could not be 

identified with PCA alone. Calibration and reproducibility studies were performed 

to evaluate the performance of the MCAD.  The array sensor demonstrated a 

linear response to varying concentrations over a range of two orders of 

magnitude.  In addition to a linear response, the MCAD showed good intra-assay 

reproducibility with RSDs of peak area and peak height of 3 to 4%.  Parameters 

such as GC column temperature, column flow rate, and flow cell temperature 

were studied and the MCAD was shown to maintain peak integrity reasonably 

well despite the fact that it was not modified for this application.  The studies 

conducted herein represent a step forward in the elucidation of complex mixtures 
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using MCA sensors.  It could be imagined that with the combination of pre-sensor 

separation, MCA detection, and pattern recognition of array response signatures, 

the components of complicated mixtures could be readily identified.  Although 

not pursued in this proof of concept work, it should also be possible to take 

advantage of the diminutive size of MCAs to miniaturize and better integrate GC-

MCAD systems. 
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CHAPTER 6: CONCLUSIONS 
 

 In the field of MC sensors, great strides have been made in the 

development of detection schemes and strategies for increasing the sensitivity of 

the sensor.  The research presented in this work represents strategies for 

enhancing the selectivity of MC sensors. Several different approaches were taken 

when attempting to improve the selectivity of the MC sensor.  In chapter 2 

research focused simply on demonstrating that MC sensors could be 

functionalized with thiolated SAMs.  Once SAM formation was accomplished, 

these SAM coated cantilevers were used to detect metal ions in the liquid phase.  

Of particular importance, was the need to demonstrate that different thiolated 

ligand SAMs would respond differently to each metal ion.  This fact was 

confirmed through the initial research, which not only demonstrated the moderate 

selectivity of SAMs to metal ions, but also the good sensitivity at which these 

metal ions could be detected. 

 The research detailed in chapter 2 paved the way for significant 

developments in MC sensor selectivity.  The second phase of the research 

presented in chapter 3 represented the first time that MCAs were functionalized 

with SAMs having different ligand functionalities on one sensor chip.  A capillary 

coating procedure was developed that allowed for individual coating of each 

cantilever.  The ability to individually coat each cantilever gave rise to MCAs 

with each cantilever having a different ligand SAM.  The MCA was exposed to 

different metal ions and the response signatures used in conjunction with pattern 

recognition algorithms to identify and quantitate the metal ion injected. 
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 The metal ion array project demonstrated that by using an array and 

pattern recognition algorithms, a distributed selectivity could be generated in 

these MCAs.  Another approach to producing selectivity in MC sensors was to 

couple the sensor to a chromatographic technique.  By taking advantage of the 

ability of the chromatography to separate each analyte in a predictable manner, 

mixtures could be analyzed with the MC sensor.  In addition to the selectivity 

enhancement given by a separation of components of a mixture, an MCA offering 

distributed selectivity could be used as the detector in chromatography allowing 

not only for measurement of a chromatographic peak, but identification of that 

peak.  In an extension of the metal ion array research, the array used in this 

research was coupled to an IEC column for the separation and detection of metal 

ions.  Unfortunately, an adequate flow cell was not designed that allowed for 

proper washout and sensitive detection of the metal ions after separation by an 

IEC column.  

 The second major division of research presented in chapter 4 of this work 

involves detection of analytes in the gas phase.  In the first project related to gas 

phase detection, MCAs differentially coated with polymeric RPs by way of PVD.  

Small molecule gas phase analytes were detected by these polymer coated 

cantilevers, but the responses were similar for different gases.  Experimental 

parameters such as temperature, humidity and injection methods were adjusted to 

determine if adjusting the parameters would impact the selectivity of the MCA 

response.  In this work pattern recognition algorithms proved to be the most 
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significant means to differentiate between the responses of each gas phase 

analyte. 

 The final project detailed in chapter 5 of this work involved taking the 

former gas phase project a step further by invoking the use of GC to impart 

selectivity to the system.  A standard GC system was connected to a flow cell 

housing a MCA and mixtures of VOCs were injected onto the GC column.  The 

mixture was separated by the GC and detected by the MCA.  The MCA showed 

good sensitivity to each analyte in the mixture.  Pattern recognition algorithms 

were applied to the response signatures of each analyte and it was determined that 

all analyte’s responses except for one analyte was significantly different from 

those of the other analytes tested.  Demonstrating that chromatography coupled to 

pattern recognition algorithms would generate the largest amount of selectivity.    

 The research presented in this work presented interesting methods aimed 

at increasing the selectivity of MC sensors through a variety of approaches.  The 

research presented represents one of many small steps that will be needed to push 

MC sensors to the forefront of sensor technology.     
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