To the Graduate Council:

I am submitting herewith a thesis written by Venkatesh Srinivasan entitled “Timing Jitter in Symmetric Load Ring Oscillators and the Estimation of Aperture Uncertainty in A-D Converters.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Electrical Engineering.

Syed K. Islam
Major Professor

We have read this thesis
and recommend its acceptance:

Benjamin J. Blalock

Donald W. Bouldin

Accepted for the Council:

Anne Mayhew
Vice Provost and Dean of Graduate Studies

(Original signatures are on file with official student records.)
Timing Jitter In Symmetric Load Ring Oscillators
And The Estimation Of Aperture Uncertainty In A-D
Converters

A Thesis
Presented for the
Master of Science Degree
The University of Tennessee, Knoxville

Venkatesh Srinivasan
August 2002
ACKNOWLEDGEMENTS

My sincere thanks to my advisor Dr. Syed K. Islam for providing me the opportunity to pursue my Master’s at this university and for guiding me towards the completion of this thesis. Special thanks to Dr. Benjamin J. Blalock for so graciously allocating his time for me, the result of which has been the many valuable suggestions that I have received from him. I also wish to thank Dr. Donald W. Bouldin for teaching me the essentials of IC design and for serving on my committee. A thank you also goes to Bryce Gray and Gary T. Hendrickson of Analog Devices Inc., Greensboro, NC, for their support and encouragement. And thanks to my fellow graduate students and to all the faculty and staff at our department for making my graduate study such a rewarding experience.

My special thanks to the ‘Gaeng’ of BITS, Pilani, for the wonderful time during my undergraduate days and the continued support here in the US. Also, my friend Nirisha, deserves a special mention for her solid support during the final months of this thesis, a big thank you to you. And thanks to all my friends both here in the US and back home in India, life just got better after knowing you all!

And finally, thanks to destiny for blessing me with such a wonderful family. Amma, Appa, Viji and Thathi, I owe it all to you.
Timing jitter in clock signals presents a limitation to the performance of a variety of applications and systems. The criticality of the issue is discussed with the A-D converter as the backdrop. Timing errors in the sampling clock, the analog input signal and the aperture uncertainty of the A-D converter degrade the signal-to-noise ratio performance. In this thesis, a method to estimate the aperture uncertainty of the converter has been developed. The model accounts for the converter’s quantization noise and differential non-linearity errors and thereby improves the accuracy of the estimation. The technique was applied to a 10-Bit converter and the results are presented.

For clock generation using PLLs, ring oscillators are attractive from an integration and cost point of view for use as a VCO. Their timing jitter can be improved by increasing the output voltage swing, the gate overdrive of the transistors of the differential pair and the power dissipation while maintaining just a minimum required small signal gain for the delay stage. In this thesis, it is shown that the maximum possible output voltage swing is dependent entirely on technology parameters. The proposed oscillator topology uses an n-MOS differential pair with a class of load elements called the ‘symmetric loads’ and is designed for the maximum possible output voltage swing. Frequency variation is achieved by driving the body of the symmetric loads in order to keep the swing and hence phase noise constant across frequencies. Also, the frequency vs. body voltage characteristics has been derived and found to be linear. Finally, the proposed theoretical predictions have been validated with simulation results.
CONTENTS

1 Introduction ..1

1.1 Overview ..1

1.2 Thesis Organization ..3

2 Timing Jitter And Estimation of Aperture Uncertainty in A-D Converters5

2.1 Introduction ...5

2.2 Aperture Uncertainty ..6

2.3 Timing Jitter ..6

2.4 ADC Noise Sources ...7

2.5 Phase Noise Plots And Timing Jitter Extraction..13

2.6 Estimation of Aperture Uncertainty ...22

2.7 Experimental Results ...23

3 Timing Jitter In Symmetric Load Ring Oscillators ...27

3.1 Symmetric Load Ring Oscillator ..28

3.2 MOSFET Noise Analysis ...32

3.3 Symmetric Load Noise Analysis ..34

3.4 Timing Jitter in Ring Oscillators ..36

4 A Swing Optimized Body Driven Oscillator ...47

4.1 Maximum Possible Voltage Swing ..48

4.2 Ring Oscillator Phase Noise ...53

4.3 Swing Maximized Body Driven Oscillator ..55
4.4 Simulation Results ..57

5 Conclusions and Future Work ..64

5.1 Conclusions ...64
5.2 Future Work ..66

References ..68

Appendices ..75

Appendix A – Timing Jitter Estimation For The 65MHz Sampling Clock76
Appendix B – The Ring Oscillator system ..78

Vita ..85
List of Tables

Table 2.1 Sideband Noise power vs. Offset Frequency for a 100MHz Signal...............20
Table 2.2 Measured SNR and extrapolated timing jitter for the ADC.........................24
Table 2.3 Estimated timing jitter for sampling clock and analog input signal24
Table 4.1 Simulation Results for Osc-1, Osc-2 & Osc-3..59
Table 4.2 Phase Noise across the frequency range of Osc-1 & Osc-2........................61
Table A.1 Sideband Noise Power vs. Offset Frequency for 65MHz Signal77
Table B.1 Aspect Ratios of the Transistors used in the Delay stage of Osc-1 to Osc-379
Table B.2 Aspect Ratio for the Transistors of Bias Generation Circuitry81
Table B.3 Aspect Ratios for the Transistors of Current Reference...........................82
Table B.4 Worst-Case Performance of Current Reference for Different Process Runs.....83
Table B.5 Summary of worst-case performance for the Bias Generation Circuitry84
LIST OF FIGURES

Figure 2.1 Timing Jitter in Oscillators ... 7
Figure 2.2 Effect of Sampling Clock Jitter ... 9
Figure 2.3 Assumed probability density for the quantization error ... 11
Figure 2.4 Spectrum for Eq.2.10 (left) and an Actual Oscillator (Right) .. 16
Figure 2.5 Phase Noise plot for 1GHz signal generated from the Rohde & Schwarz 18
Figure 2.6 Phase noise plot for the 100MHz signal generated from Rohde & Schwarz 19
Figure 2.7 Phase Noise plots for different frequencies from the Rohde & Schwarz 22
Figure 2.8 Calculated SNR vs. Measured SNR ... 25
Figure 3.1 Typical ring oscillator using differential delay stages ... 28
Figure 3.2 Symmetric load delay cell ... 29
Figure 3.3 Symmetric Load and its I-V characteristics .. 30
Figure 3.4 Variation of noise spectral density with voltage drop across the load 35
Figure 3.5 Intrinsic timing error per delay stage .. 37
Figure 3.6 Output waveforms for differential delay stages .. 38
Figure 3.7 First crossing approximation for timing jitter ... 39
Figure 3.8 Noise current sources in the symmetric load delay cell .. 41
Figure 3.9 AC Noise Model for the delay cell ... 41
Figure 4.1 Phase Noise plots for Osc-1, Osc-2 & Osc-3 .. 59
Figure 4.2 Simulation Results vs. Theory for Osc-1 .. 61
Figure 4.3 Simulated Results vs. Theory for Osc-2 ... 62
Figure A.1 Phase Noise plot for the 65MHz Sampling Clock .. 77
Figure B.1 Delay Cell for the Proposed Oscillator ...79
Figure B.2 Bias Generation Circuitry ..80
Figure B.3 Current Reference Circuitry ...82
Figure B.4 Worst-Case Simulation Performance of Current Reference (Model-1)83
Figure B.5 Magnitude & Phase of the Loop Transmission for the Bias Circuitry84
1 INTRODUCTION

1.1 Overview

Timing information in the form of clock or oscillator signals plays a critical role in most modern applications. The timing jitter or uncertainty in the timing information presents a serious limitation to the achievable system performance. Clock jitter in digital circuits can lead to a violation of the setup/hold time requirements. While, in a sampling system like the A-D converter (ADC), timing jitter in the sampling clock degrades the dynamic range of the converter. Other applications include RF frequency synthesis where a low phase noise oscillator needs to be employed for optimal performance. In all the above cases, the challenge lies in generating low jitter clocks.

In this work, the effect of timing jitter is addressed with the perspective of a sampling system like the A-D converter. For this system, jitter may be defined as the random fluctuations in the sampling instant, thereby leading to an error in the sampled signal. The voltage error is proportional to the slew rate of the input and so the problem of jitter becomes more critical with an increase in the input signal frequency [1]. Apart from the jitter on the sampling clock, the aperture uncertainty of the sample-and-hold internal to the ADC also contributes to the signal-to-noise ratio (SNR) degradation. In the event of an ideal analog input and sampling clock, the aperture uncertainty represents the limit on the maximum achievable SNR. Therefore, an accurate estimation of the aperture uncertainty becomes important.
Typically for a system like the A-D converter, the timing information is provided from an external source like a crystal oscillator. In this scenario, the problem amounts to minimizing the noise introduced by routing and clock distribution. From an end-user’s point of view, the degradation in the ADC performance can be lessened through the use of good quality crystal oscillators and ensuring good board layout. However, as applications become faster, high-speed/high-quality crystal oscillators are harder to make and hence does not amount to a cost effective solution.

Frequency synthesis through the use of a Phase Locked Loop (PLL) can be an attractive option given the fact that it can be fully integrated. But, the Voltage Controlled Oscillator (VCO) is noisier than a crystal oscillator and this being the dominant source of noise in a PLL, degrades the overall phase noise performance. A careful design of the VCO and a proper consideration of the PLL system level issues (loop bandwidth for example) can lead to good phase noise performance [2]. Today, PLLs are being increasingly used in jitter sensitive applications like RF frequency synthesis [3], clock & data recovery [5], clock skew management and clock generation [4,6,7,8,9].

The primary focus of this thesis has been in understanding the noise processes in a ring oscillator and suggesting circuit design techniques to achieve a lower phase noise/timing jitter performance. The ring oscillator considered consists of an n-MOS differential pair with a class of loads called the symmetric loads. The inverse proportionality between jitter and output voltage swing is exploited and minimum jitter is obtained by designing the oscillator for a maximum possible output swing. A
theoretical limit to the output voltage swing has also been derived. Frequency variation is achieved by varying the threshold voltage of the p-MOS transistors in the load by driving the body (n-well). It has also been shown that it is sufficient to optimize the phase noise performance of the oscillator at one frequency and the performance remains unaltered across the possible frequency range of the oscillator given a constant output swing. Also, the relation between the frequency of oscillation and the oscillator control voltage has been derived and validated with simulation results.

In summary, this thesis analyzes the effects of timing jitter on ADCs and also presents a methodology to estimate the aperture uncertainty of the converter. The ADC is highly sensitive to jitter on its sampling clock and this severely degrades the SNR performance. This thesis looks at the issues involved in generating low jitter clocks primarily for use as a VCO in a PLL system. The primary jitter contributor in such a setting being the VCO, an analysis is carried out to identify the parameters that can help reduce the timing jitter. Such an analysis has lead to a novel oscillator that employs body driving for frequency control and achieves low jitter by maximizing the output voltage swing.

1.2 Thesis Organization

In chapter two, the effect of timing jitter on the performance of the ADC is discussed. The link between the SNR of the ADC and the total jitter that the system sees is established. Next, a discussion on oscillator phase noise and phase noise plots is presented and the technique used for estimating timing jitter from a phase noise plot is described. The ADC timing jitter model and the methodology for estimating aperture
uncertainty are developed and experimental results are presented to verify the proposed
technique.

Chapter three begins with a description of the symmetric load VCO and its
characteristics. A noise analysis of the delay cell is carried out based on the framework
established in [10]. The implications of this analysis specific to the case of the symmetric
load oscillator are discussed. Also the various parameters and their influences on the
timing jitter are explained and advantages of having a higher output voltage is
established.

In chapter four the proposed oscillator topology is developed. An upper bound on the
swing is derived and is found to be entirely technology dependent. It is also shown that
the phase noise performance needs to be optimized for only one frequency within the
frequency range of the oscillator. The frequency vs. Bulk voltage (applied to the n-well)
characteristic is also derived. Finally, the theoretical predictions are verified using
simulation results.

Chapter five discusses the key issues and conclusions arrived at and suggestions for
future work are also provided.

2 Timing Jitter And Estimation of Aperture Uncertainty in A-D Converters

2.1 Introduction

Timing jitter and non-linearity are major factors that limit the speed and accuracy of A-D converters (ADCs) [11]. However, non-linearities and gain offsets can be trimmed out and calibrated for in modern high-speed converters. Jitter effects due to their random nature cannot be trimmed out. As the ADCs become faster, the requirements on timing jitter become more stringent and today, for some demanding high speed applications, the tolerable timing jitter needs to be a few picoseconds or less. The total system jitter consists of the sampling circuit jitter inside the ADC (aperture uncertainty), the analog input signal jitter and the sampling clock jitter. From an end-user point of view, the aperture uncertainty represents the limit on the maximum achievable SNR. This being the case, it is essential that the aperture uncertainty be accurately estimated.

A technique for the estimation of aperture uncertainty in sampling systems is presented in [11]. However, this method does not properly separate the effects of the ADC quantization noise and non-linearity on the measurement. In this thesis, a technique is proposed that improves the accuracy of the estimation by accounting for the ADC non-linearity and quantization noise.

This chapter begins with the definitions of aperture uncertainty and timing jitter followed by a section introducing the noise sources in an ADC. In this section, a link by
means of an equation is established between the SNR of a converter and the total system jitter that is present in the ADC system. Next, phase noise plots are introduced and a quick method to estimate the timing jitter information from them is presented. In subsequent sections, the jitter estimation model developed in [11] is described and the technique for estimating the aperture uncertainty is developed. Finally, the methodology is applied to a 10-Bit A-D Converter (AD9218) and the results are discussed.

2.2 Aperture Uncertainty

Aperture Uncertainty is defined as the variation from ideal, in the timing of the sampling events of the sample-and-hold internal to the ADC. To explain further, requires the understanding of the parameter ‘Aperture Delay’. Aperture Delay represents the amount of time taken from the sample-and-hold signal being provided to the ADC to the sample-and-hold actually going into the hold mode. This delay is not constant and varies from one sample to the next. This sample-to-sample variation in the exact time taken by the sample-and-hold to go into hold mode is called Aperture Uncertainty [12].

2.3 Timing Jitter

Due to several physical mechanisms, the output frequency of an oscillator changes with time. One of these mechanisms is a systematic variation (drifts) that can occur due to aging in oscillators and these effects are commonly referred to as “long-term instabilities”. The random variations caused by internal noise sources such as thermal,
shot, flicker noises are referred to as “short-term instabilities”. These are so called because they become more and more significant when shorter time intervals are considered [13]. An oscillator’s short-term frequency instabilities are most commonly quantified using the parameters Jitter and Phase Noise [2]. Here, the discussion is centered on the short-term instabilities of an oscillator.

From a time domain standpoint, jitter represents the variation of the clock edges from their ideal positions in time. This can be better understood by looking at Fig.2.1. In Fig.2.1, the bold lines represent the instants of time when the edges of an ideal clock are expected to arrive and the shaded region represents the time window within which the edges actually arrive. This uncertainty in the timing of an oscillator (represented by the shaded region) is called timing jitter.

2.4 ADC Noise Sources

There are three dominant sources of noise in an A-D converter. These include the ADC’s quantization noise, noise because of jitter in sampling and the noise due to the devices internal to the ADC [14].

![Figure 2.1 Timing Jitter in Oscillators](image)
This section investigates the effects of these noise sources on the signal-to-noise ratio of the converter. The approach is as follows: each of the three noise sources is studied individually and its effect on the ADC’s SNR is quantified, and assuming zero correlation between the noise sources and summing their mean square values, the SNR as limited by all the three noise sources is derived.

2.4.1 Effect of Timing Jitter

In a sampling system like the ADC, any uncertainty in the sampling process due to jitter results in an uncertainty in the sampled voltage and hence degrades the overall SNR. This error voltage is directly proportional to the input slew rate and jitter. Fig.2.2 illustrates the effect of jitter during the sampling process.

Assuming a full-scale analog input and a Gaussian distribution for timing jitter, the theoretical SNR, as limited by the rms timing jitter is derived in [12] and is as given below,

$$SNR = -20\log\left(2\pi f_{in}^2 t_j^2\right)$$

...(2.1)

where, f_{in} is the analog input frequency and t_j is the system jitter.

Important insights can be gained from this simple equation with regards to the effect of jitter. Let us solve Eq.2.1 for t_j with the requirement that a 60dB SNR be achieved at an analog input signal frequency of 200MHz. In order to meet this design specification, the total system jitter (t_j) should be less than 0.8ps, a non-trivial task indeed!
In reality however, the system jitter needs to be lesser than what is predicted by Eq.2.1. This is to account for the other noise sources that have not been considered yet. Also, for a given timing jitter, the SNR degrades with an increase in the analog input frequency as can be seen from the above equation. This implies more stringent requirements on timing jitter as applications demand faster ADCs.

2.4.2 Effects of Quantization and DNL Errors

In an ideal A-D converter, each analog step size is 1 LSB or in other words, the transition values are precisely 1 LSB apart. The differential non-linearity (DNL) of a converter is defined as the variation in analog step sizes away from 1 LSB [15]. In the scenario where the converter exhibits an average DNL error of ϵ, the step sizes become $(1+\epsilon)$ LSB.

A-D converters have a range of valid input values that produce the same output digital word and this signal ambiguity produces what is called the ‘Quantization Noise’.
Quantization noise is inevitable and occurs even in ideal A-D converters. While modeling the stochastic properties of the quantization noise, it is assumed to be a random variable with a uniform probability density function distributed between \(\pm \frac{V_{\text{LSB}}}{2} \). Now extending this assumption to the case of a real converter with DNL errors, the quantization noise is distributed uniformly between \(-\frac{V_{\text{LSB}}}{2}(1 + \varepsilon) \) and \(+\frac{V_{\text{LSB}}}{2}(1 + \varepsilon) \).

With the condition that the total area under the probability density function be 1, the height of the distribution can be calculated to be \(\frac{1}{V_{\text{LSB}}(1 + \varepsilon)} \). The probability density function is shown in Fig. 2.3.

The rms value of the quantization noise can be calculated as follows:

\[
V_{\text{rms}} = \left(\int_{-\infty}^{+\infty} x^2 f(x) \, dx \right)^{1/2} = \left(\frac{V_{\text{LSB}}}{2} \int_{-\frac{V_{\text{LSB}}}{2}(1 + \varepsilon)}^{\frac{V_{\text{LSB}}}{2}(1 + \varepsilon)} x^2 \cdot \frac{1}{V_{\text{LSB}}(1 + \varepsilon)} \, dx \right)^{1/2}
\]

\[
= \left(\frac{1}{V_{\text{LSB}}(1 + \varepsilon)} \int_{-\frac{V_{\text{LSB}}}{2}(1 + \varepsilon)}^{\frac{V_{\text{LSB}}}{2}(1 + \varepsilon)} x^2 \, dx \right)^{1/2}
\]

\[
= \left[\frac{1}{3 \cdot V_{\text{LSB}}(1 + \varepsilon)} \left(\frac{V_{\text{LSB}}^3}{8} (1 + \varepsilon)^3 + \frac{V_{\text{LSB}}^3}{8} (1 + \varepsilon)^3 \right) \right]^{1/2}
\]

\[
= \frac{V_{\text{LSB}}}{\sqrt{12}} \quad (2.2)
\]
Figure 2.3 Assumed probability density for the quantization error

Assuming a full-scale analog input signal with a peak-peak voltage of V_{ref} (where V_{ref} is the reference voltage to the converter), the rms value of the input is, $\frac{V_{\text{ref}}}{\sqrt{2}}$. Therefore, the signal-to-noise ratio is given by,

$$\text{SNR} = -20 \log \left[\frac{(1+\varepsilon)}{2^N} \frac{2}{\sqrt{3}} \right] \quad \text{...}(2.3)$$

When the differential non-linearity is absent as in the case of an ideal converter, ε is zero and Eq.2.3 simplifies to the ideal SNR value of 6.02N + 1.76dB as expected.

2.4.3 Effect of ADC Internal Noise

The ADC internal circuits produce a certain amount of rms noise due to thermal effects, which accounts for the fact that the output of most wideband ADCs is a distribution of codes centered around the nominal value for a DC input [16]. To measure its value, a ‘clean’ dc source is connected to the analog input of the A-D converter and the results of
a large number of conversions are noted. These are then plotted as a histogram and as outlined in [14], the equivalent rms input referred noise is calculated in LSBs.

Let V_{noise} represent the equivalent rms input referred noise in LSBs. Now, converting this to an rms voltage, we get,

$$V_{\text{noise}} \cdot \frac{V_{\text{ref}}}{2^N}$$

... (2.4)

And again assuming a full-scale input, the signal-to-noise ratio becomes,

$$\text{SNR} = -20 \log \left[\frac{\sqrt{2} \cdot V_{\text{noise}} \text{rms}}{2^{N-1}} \right]$$

...(2.5)

2.4.4 Generalized Expression for ADC’s SNR

As stated before, assuming that all the three noise sources are uncorrelated, the mean square values can be summed together. And so, the signal-to-noise ratio taking into consideration all the noise sources can be expressed as,

$$\text{SNR} = -20 \log \left[\left(2\pi f_{\text{in}} t_j \right)^2 + \left(\frac{1 + \epsilon}{2^N} \right)^2 + \left(\frac{\sqrt{2} \cdot V_{\text{noise}} \text{rms}}{2^{N-1}} \right)^2 \right]^{1/2}$$

...(2.6)

- f_{in} = Analog input signal frequency
- t_j = rms timing jitter (total)
- ϵ = Average DNL of converter
- $V_{\text{noise \ rms}}$ = Thermal noise in LSBs
- N = number of bits
A similar equation is presented in [1]. However, this equation does not simplify to the expected ADC SNR equation of $6.02N + 1.76\text{dB}$ when the effects of timing jitter and thermal noise are removed. This is accounted for in Eq.2.6. Comparing the equations we find that [1] is in error because of the missing $\sqrt{\frac{2}{3}}$ factor in the analysis for the quantization noise. The equation given in [17] works fine when the effects of timing jitter and thermal noise are removed but when included, it overestimates the timing jitter contribution. Also a correction factor of $2\sqrt{2}$ is introduced for the thermal noise in Eq.2.6.

The total system jitter can be measured by analyzing the degradation of the ADC SNR with analog input signal frequency. For a given timing jitter, the SNR degrades with an increase in the analog input frequency. Hence for a low frequency SNR measurement, the effect of jitter can be neglected and solving Eq.2.6, the total contribution due to thermal and differential non-linearity noise can be estimated. Once these are known, Eq.2.6 can be solved again to estimate the total system jitter (t_j) for a different high frequency analog input signal [1]. In this thesis, the above technique has been used to estimate the total system jitter seen by the ADC.

2.5 Phase Noise Plots And Timing Jitter Extraction

Because the timing jitter is in the picoseconds or sub-picoseconds range, a direct time domain measurement is both complicated and cumbersome. Frequency domain measurements of Phase Noise on the other hand are easy and elegant and can give a
quick estimate of the amount of jitter present. This section introduces phase noise, phase noise plots and the technique used for estimating timing jitter from phase noise plots.

2.5.1 Phase Noise

An ideal oscillator can be represented as

\[V(t) = A_0 \cos(\omega_0 t + \phi_0) \]

\[\ldots (2.7) \]

where, \(A_0 \) is the peak amplitude, \(\omega_0 \) is the frequency of oscillation (in rads/sec) and \(\phi_0 \) is a fixed phase (in rads). The one-sided power spectral density of such an oscillator will consist of an impulse at the frequency of oscillation (\(\omega_0 \)).

A real oscillator however, contains both amplitude and phase noise. Its one-sided power spectral density consists of skirts around the fundamental as shown in Fig.2.4. A real oscillator is represented as below,

\[V(t) = A_0 [1 + \varepsilon(t)] \cos[\omega_0 t + \phi(t)] \]

\[\ldots (2.8) \]

where, \(\varepsilon(t) \) and \(\phi(t) \) represent the random amplitude and phase fluctuations respectively. Usually, the effect of amplitude noise on the frequency instability is much smaller than that of the phase noise and hence can be neglected \[13,18\] . Eq.2.8 therefore, becomes,

\[V(t) = A_0 \cos(\omega_0 t + \phi(t)) \]

\[\ldots (2.9) \]

Now, to estimate the timing jitter, \(\phi(t) \) will first have to be measured. This is accomplished by drawing a parallel between the cases of FM modulation and the oscillator Eq.2.9. Classical FM modulation \[19\] is given by,
\[V(t) = A_0 \cos \left[\omega_0 t + \beta \sin \omega_m t \right] \quad \ldots (2.10) \]

where \(\omega_m \) is the modulation frequency, \(\beta \) is the modulation index, \(\omega_0 \) is the carrier frequency and \(A_0 \) is the amplitude. Performing a rigorous analysis of FM modulation yields [20],

\[
V(t) = A_0 J_0(\beta) \cos(\omega_0 t) \\
A_0 J_1(\beta) \left[\cos(\omega_0 + \omega_m) t - \cos(\omega_0 - \omega_m) t \right] \\
A_0 J_2(\beta) \left[\cos(\omega_0 + 2\omega_m) t - \cos(\omega_0 - 2\omega_m) t \right] \\
A_0 J_3(\beta) \left[\cos(\omega_0 + 3\omega_m) t - \cos(\omega_0 - 3\omega_m) t \right] + ...
\]

\[\ldots (2.11) \]

where, \(J_n(\beta) \) is the Bessel function of the first kind and \(n \)th order. For very small modulation index (\(\beta << 1 \)), only \(J_0(\beta) \) & \(J_1(\beta) \) are important and the other higher order Bessel functions can be neglected. Also, for \(\beta << 1 \), \(J_0(\beta) = 1 \) and \(J_1(\beta) = \beta / 2 \) [19, 21]. Therefore, Eq.2.11 reduces to,

\[
V(t) = A_0 \left[\frac{\beta}{2} \cos(\omega_0 t) + \frac{\beta}{2} \cos(\omega_0 + \omega_m) t \\
- \frac{\beta}{2} \cos(\omega_0 - \omega_m) t \right]
\]

\[\ldots (2.12) \]

Referring to Eq.2.10, the phase fluctuation is represented by \(\beta \sin \omega_m t \) and has a mean square noise power of \(\beta^2 / 2 \). Looking at Eq.2.12, it can be seen that the relative power of the sidebands with respect to the carrier is also \(\beta^2 / 2 \).

Comparing Eqs.2.9 & 2.10, it can be seen that Eq.2.9 is a case of \(\phi(t) \) modulating the carrier instead of \(\beta \sin \omega_m t \). And since \(\phi(t) \) represents random fluctuations of the phase, the noise power will be distributed across the spectrum rather than at two discrete spectral lines (at \(\omega_0 + \omega_m \) and \(\omega_0 - \omega_m \)) as in the case of Eq.2.10. This is illustrated in Fig.2.4.
Thus, if the case of a real oscillator is assumed to be similar to that of FM modulation, one can apply the results of Eq.2.12. Also, since we are dealing with small values of timing jitter, the assumption of $\beta \ll 1$ is justified. Therefore, noting that the mean square noise power of the phase fluctuations in a FM modulated signal is equal to the relative power of the sidebands with respect to the carrier, the phase jitter in radians2 of an oscillator is equal to the relative total sideband noise power [21]. And so, integrating the phase noise plots over the frequency range of interest, the total phase jitter can be estimated and then converted to timing jitter.

2.5.2 Phase Noise Plots

In the frequency domain, the oscillator’s short term instabilities are expressed in terms of single sideband noise spectral density, expressed in units of decibels below carrier/Hz (dBc/Hz) and is defined as follows [2]

![Figure 2.4 Spectrum for Eq.2.10 (left) and an Actual Oscillator (Right)]
\[L(\Delta \omega) = 10 \log \left[\frac{P_{\text{sideband}}(\omega_0 + \Delta \omega, 1Hz)}{P_{\text{carrier}}} \right] \] ... (2.13)

where \(P_{\text{sideband}}(\omega_0 + \Delta \omega, 1Hz) \) represents the single sideband power at a frequency offset of \(\Delta \omega \) (rads/sec) from the carrier in a measurement bandwidth of 1Hz as shown in Fig.2.4 and \(P_{\text{carrier}} \) is the total power under the spectrum. The spectral densities are measured at different offsets and plotted as in Fig.2.5. These are what are called ‘Phase Noise plots’.

The phase noise plots are easier to understand when they are broken down into regions of different slopes. It has been found in [22] that the phase noise plots of various oscillator sources can be modeled by power law curves. According to this model, the phase noise plots have different regions, each of which can be expressed as,

\[h_\alpha \Delta f^\alpha \] ...(2.14)

The exponent \(\alpha \) typically takes the integer values of -4, -3, -2, -1, 0 and is a characteristic of the kind of noise like thermal, flicker, additive white noise etc. Also, non-integer values of \(\alpha \) can be observed as well. The constant \(h_\alpha \) is a measure of the noise level and \(\Delta f \) represents the frequency offset from the carrier in Hertz. Plotting \(L(\Delta f) \) against \(\Delta f \) on a logarithmic scale, the different slopes can be clearly observed. Fig.2.5 shows the phase noise plot for a 1GHz signal from a Rohde & Schwarz SMG signal generator measured using a Rohde & Schwarz spectrum analyzer. Referring to Fig.2.5, Region I exhibits a slope of -20dB/dec, Region II falls at approximately -10dB/dec while Region III shows a slope of 0dB/dec. With reference to the power laws, Region I is modeled as \(h_2 \Delta f^2 \), Region II as \(h_1 \Delta f^1 \) and Region III as \(h_0 \Delta f^0 \).
Figure 2.5 Phase Noise plot for 1GHz signal generated from the Rohde & Schwarz

2.5.3 Timing Jitter Extraction

Integrating the phase noise plot over the frequency range of interest, we can get the total sideband power. And using the theory presented earlier, this represents the phase noise in radians\(^2\). Once the total phase noise is obtained, it can be very easily converted to timing jitter. This is achieved by integrating the phase noise plot over the bandwidth in question and then performing some additional calculations [23]. The result is an rms value for \(\phi(t)\). This result may be expressed in radians, dB, unit intervals or seconds. The value in seconds represents one standard deviation of jitter contributed by the phase noise in the bandwidth of integration. While quantifying the timing jitter values of crystal oscillators, a bandwidth of 12KHz – 20MHz is used as a standard by crystal
manufacturers [24,25,26]. Hence, the same bandwidth has been used for integrating the phase noise plots in this thesis.

Now, refer to Fig. 2.6 where the phase noise plot for a 100MHz signal generated from the Rohde & Schwarz signal generator is shown. The phase noise values are given in decibels below carrier/Hz. Assuming a carrier power of 1mW, the absolute values turn out to be as given in Table 2.1.

As stated before, each region of the phase noise plot can be expressed as $h_\alpha \Delta f^\alpha$ where $\alpha = -4$, -3, -2, -1, or 0. Going by the above discussion, the total sideband power can be obtained by integrating each region separately and then summing the result. Since h_α remains a constant for a particular region, it can be evaluated from a single phase noise measurement at an offset frequency that falls into that region.

![Figure 2.6 Phase noise plot for the 100MHz signal generated from Rohde & Schwarz](image)
Table 2.1 Sideband Noise power vs. Offset Frequency for a 100MHz Signal

<table>
<thead>
<tr>
<th>Frequency Offset (Hz)</th>
<th>Phase Noise (dBc/Hz)</th>
<th>Noise Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>-111.30</td>
<td>7.413e-15</td>
</tr>
<tr>
<td>10e3</td>
<td>-121.03</td>
<td>7.889e-16</td>
</tr>
<tr>
<td>100e3</td>
<td>-123.10</td>
<td>4.897e-16</td>
</tr>
<tr>
<td>1e6</td>
<td>-134.95</td>
<td>3.1988e-17</td>
</tr>
<tr>
<td>10e6</td>
<td>-140.70</td>
<td>8.511e-18</td>
</tr>
<tr>
<td>100e6</td>
<td>-141.10</td>
<td>7.762e-18</td>
</tr>
</tbody>
</table>

From Fig.2.6 and using Table 2.1, the integration is performed first in the 12KHz – 100KHz bandwidth. The phase noise in this frequency range is assumed constant and we get,

$$\int_{12K}^{100K} (7.889e-15) \cdot (\Delta f)^0 \cdot df = 0.6942e-10$$

The region from 100KHz – 1MHz falls as $1/\Delta f^0$ and so integrating in this bandwidth we get,

$$4.897e-16 \times (10^2) \times \int_{100K}^{10M} \left(\frac{1}{\Delta f}\right) df = 2.255e-10$$

From 10MHz and upwards, the region follows $1/\Delta f^0$ and as stated, the bandwidth has been restricted to 20MHz. Integrating we get,

$$8.511e-18 \times (20MHz - 10MHz) = 0.8511e-10$$

Adding up, the total sideband noise power = 3.80e-10 W
Since we are concerned with the relative sideband power, and noting that we initially assumed a carrier power of 1mW, the relative sideband power is obtained as 3.80e-7 on dividing by 1mW. This is the total phase noise in radians2. Therefore, the total phase noise in rads is obtained by taking the square root and is as given below.

$$\text{Phase Noise} = 6.164e^{-4} \text{ rads}$$

To convert to timing jitter, we divide by $2\pi \times freq$ and in this case, the frequency of oscillation is 100MHz and so the total timing jitter is given by

$$\text{Timing jitter (rms)} = \frac{6.164e^{-4} \times \pi}{(2\pi \times 1e8)} = 0.98 \text{ ps}$$

Thus, the Rohde & Schwarz SMG generator contributes an rms jitter of 0.98 ps at 100MHz carrier frequency in the 12KHz – 20MHz bandwidth.

Fig.2.7 shows the phase noise plots for different frequencies generated from the Rohde & Schwarz signal generator. As can be observed from the figure, the phase noise remains approximately constant over the 12KHz – 20MHz bandwidth. And so using the timing jitter model presented in [11], we get,

$$\Delta t^2 = \frac{B^2}{4\pi^2 f^2} \ldots (2.15)$$

where, B^2 represents the total mean square phase noise in the 12KHz – 20MHz bandwidth in radians2, ‘f’ is the frequency of interest in Hertz and Δt^2 is the mean square jitter. Using the value of 6.164e-4 rads for ‘B’ (determined from the phase noise plot for the 100MHz frequency) in Eq.2.15, jitter for different frequencies generated from the Rohde & Schwarz is calculated.
2.6 Estimation of Aperture Uncertainty

In a sampling system like the ADC, three major contributors of jitter can be identified. These include the sampling circuit jitter or aperture uncertainty \((\Delta t_s)\), the analog input signal jitter \((\Delta t_{in})\) and the sampling clock jitter \((\Delta t_{clk})\). Each jitter component can be assumed independent of each other [11] and so the mean square total system jitter \((\Delta t_j^2)\) is given by,

\[
\Delta t_j^2 = \Delta t_s^2 + \Delta t_{in}^2 + \Delta t_{clk}^2 \quad \ldots (2.16)
\]

In the proposed methodology, the total system jitter is estimated from the ADCs SNR measurements as explained in Section 2.4.4. The sampling clock & analog input signal jitter are extracted from their phase noise plots. This technique has been illustrated in the
previous section. Knowing the total system jitter, sampling clock jitter and the analog input signal jitter and solving Eq.2.16, the aperture uncertainty is estimated.

2.7 Experimental Results

The technique for estimating aperture uncertainty was tested on a 10-Bit A-D converter (AD9218) [27]. The AD9218 from Analog Devices is a dual channel 10-Bit pipelined ADC with an on-chip track-and-hold circuit. The converter is available with performance optimized for 40, 65, 80 or 105 MSPS. Data was made available from Analog Devices for the 65MSPS device and the methodology was applied to this case.

The SNR was measured at 2.5MHz to be 60.32dB and neglecting the effects of timing jitter and solving Eq.2.6, the total rms contribution by thermal noise, quantization and DNL errors was found to be 0.96×10^{-3}. Using this, Eq.2.6 and the SNR measurement values available, the total system jitter was estimated. These are summarized in Table.2.2. The analog input signal was obtained from the Rohde & Schwarz SMG signal generator and the sampling clock was generated from a LeCroy Pulse Generator whose external trigger came from the Rohde & Schwarz SMG generator. The phase noise plots for these signals were measured using a Rohde & Schwarz spectrum analyzer. The timing jitter for the analog input signals is estimated using Eq.2.15 and the estimation for the sampling clock is shown in Appendix A. Table.2.3 summarizes the timing jitter numbers obtained.
Table 2.2 Measured SNR and extrapolated timing jitter for the ADC

<table>
<thead>
<tr>
<th>Input Frequency</th>
<th>Clock Frequency</th>
<th>SNR</th>
<th>Rms Timing Jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>40MHz</td>
<td>65MHz</td>
<td>54.80 dB</td>
<td>6.144ps</td>
</tr>
<tr>
<td>52MHz</td>
<td>65MHz</td>
<td>53.25 dB</td>
<td>5.97ps</td>
</tr>
<tr>
<td>70MHz</td>
<td>65MHz</td>
<td>51.17 dB</td>
<td>5.89ps</td>
</tr>
<tr>
<td>100MHz</td>
<td>65MHz</td>
<td>48.91dB</td>
<td>5.49ps</td>
</tr>
<tr>
<td>156MHz</td>
<td>65MHz</td>
<td>45.34dB</td>
<td>5.43ps</td>
</tr>
</tbody>
</table>

Table 2.3 Estimated timing jitter for sampling clock and analog input signal

<table>
<thead>
<tr>
<th>Sampling Clock</th>
<th>Analog Input Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>65MHz</td>
<td>40MHz 2.45ps rms</td>
</tr>
<tr>
<td></td>
<td>52MHz 1.88ps rms</td>
</tr>
<tr>
<td></td>
<td>70MHz 1.40ps rms</td>
</tr>
<tr>
<td></td>
<td>100MHz 0.98ps rms</td>
</tr>
<tr>
<td></td>
<td>156MHz 0.63ps rms</td>
</tr>
</tbody>
</table>
In this methodology, once the contribution due to the thermal, quantization and DNL errors of the ADC have been accounted for, the aperture uncertainty can be estimated from a single SNR measurement. And so, for the case of 100MHz analog input signal, using the timing jitter values from Tables 2.2 & 2.3, and solving Eq.2.16, the aperture uncertainty is estimated to be 2.91ps rms.

Now, using the estimated value of aperture uncertainty and the timing jitter values summarized in Table 2.3, the total system jitter for the 40MHz, 52MHz, 70MHz & 156MHz cases is calculated using Eq.2.16. Next, using Eq.2.6, the SNR expected for these cases if the aperture uncertainty were 2.91ps rms is calculated. The expected SNR is plotted against the actual measurement values in Fig.2.8. The close agreement confirms the validity of the proposed methodology.

![Figure 2.8 Calculated SNR vs. Measured SNR](image)
In summary, the technique involves estimating the analog input signal and sampling clock jitter from phase noise plots and the total system jitter is measured based on SNR degradation of the ADC. This method accounts for the quantization and differential non-linearity of the converters. The accuracy of the method has been demonstrated by testing on a 10-Bit ADC. Also, it is worth noting that the method has the capability of measuring aperture uncertainty in the sub-picoseconds regime.
Phase Locked Loops (PLLs) are used in a wide range of applications such as frequency synthesis, clock & data recovery and clock synchronization for microprocessors. The critical component that affects performance with regards to jitter and phase noise is the Voltage Controlled Oscillator (VCO). Of the several different implementations possible, resonant circuit VCOs with an LC tank as the resonant element are known to have an excellent jitter performance. However, these usually require off-chip components defeating the purpose of integration [28,29]. On-chip implementations of inductors have been reported [30], but these generally have a low Q and are bulky. Bond-wire inductors [31] possess a higher Q but require special processing. Ring oscillators however are attractive from an integration and cost point of view and are being increasingly employed in jitter sensitive applications [6,8,32,33].

In this work, a symmetric load ring oscillator is analyzed for its jitter and phase noise performance. These types of oscillators lend themselves to self-biasing techniques and are amenable to novel schemes that implement low-jitter PLLs [9]. This chapter begins with a brief introduction to the symmetric load VCO and its characteristics. A noise analysis is performed and the timing jitter and phase noise is analyzed according to the framework established in [10]. The implications of this analysis to the design of a low jitter/phase noise VCO is presented next.
3.1 Symmetric Load Ring Oscillator

A ring oscillator is made up of a number of delay stages configured in a loop. Fig.3.1 shows a ring oscillator using differential delay stages such as that used in this work. ‘N’ delay stages are shown with a wire inversion at the end. It is easy to show that the ring will oscillate at a frequency \(f_{osc} \) given by

\[
f_{osc} = \frac{1}{2NT_d}
\]

where, \(T_d \) is the delay per stage and \(N \) is the number of stages in the ring.

The delay cell used in the symmetric load VCO is shown in Fig.3.2. It consists of an nMOS differential pair (M5-M6) and the symmetric load element consists of transistor pairs M1/M2 and M3/M4. Transistors M2/M4 are in saturation and M1/M3 swing from the linear region to the saturation region. ‘\(V_{ctrl} \)’ is the control voltage used to vary the frequency of oscillation and ‘\(V_{bias} \)’ is obtained from a separate bias generation circuitry.

![Figure 3.1 Typical ring oscillator using differential delay stages](image-url)
Figure 3.2 Symmetric load delay cell

The symmetric load is so called because of the symmetry in its I-V characteristics. Fig.3.3 shows the symmetric load and its I-V characteristics. As can be observed the output impedance of this load is highly nonlinear with the maximum resistance at the middle of the characteristic. The effective resistance is approximated to be linear by the dotted line as shown in the figure.

The biasing for the delay cell is such that, at equilibrium, half the tail current \(\frac{I_s}{2} \) flows through one of the symmetric loads causing a voltage drop of \(\frac{V_{ctrl}}{2} \) across it. And during oscillation, the entire tail current \(I_s \) is steered from one side to the other. Therefore, the voltage drop across the load swings from 0 to \(V_{ctrl} \) (as shown in Fig.3.3) and the voltage swing at the output of the oscillator swings from \(V_{dd} \) to \(V_{dd} - V_{ctrl} \).
Having established the voltage swings for the symmetric loads, it is easy to derive the effective resistance as shown by the dotted line in Fig.3.3. Consider the end of the swing where, the voltage drop across the load is V_{cntrl} and the current flowing through the load is I_{ss}.

Now, the resistance of the load is given by,

$$R_L = \frac{V_{\text{cntrl}}}{I_{ss}} \quad \ldots(3.2)$$

In this condition, both the transistors are in the saturation region and both have a source-gate voltage of V_{cntrl}. Assuming first level equations, the total current I_{ss} can be approximated as,

$$I_{ss} = \frac{\mu_p C_w}{2} \left(\frac{W}{L}\right)_1 \left[V_{\text{anl}} - V_{\text{tp}}\right]^2 + \frac{\mu_p C_w}{2} \left(\frac{W}{L}\right)_2 \left[V_{\text{anl}} - V_{\text{tp}}\right]^2 \quad \ldots(3.3)$$

The symmetric loads are designed such that both the transistors are of equal sizes and so the above equation becomes,

$$I_{ss} = \frac{\mu_p C_w}{2} \left(\frac{W}{L}\right) \left[V_{\text{anl}} - V_{\text{tp}}\right]^2 \quad \ldots(3.4)$$

![Figure 3.3 Symmetric Load and its I-V characteristics](image-url)
where, \((W/L)_1 = (W/L)_2 = (W/L)\) = aspect ratio of the transistors M1 & M2 of the symmetric load.

With the expression for the current in place, the load resistance is derived as below.

\[
\frac{1}{R_L} = \frac{I_{SS}}{V_{ctrl}} = \frac{\mu_p C_{\alpha}}{V_{ctrl}} \left(\frac{W}{L} \right) \left[\frac{V_{ctrl} - V_{tp}}{V_{ctrl}} \right]^2
\]

\[
= \mu_p C_{\alpha} \left(\frac{W}{L} \right) \left[\frac{V_{ctrl} - 2V_{tp}}{V_{ctrl}} + \frac{V_{tp}^2}{V_{ctrl}} \right]
\]

Adding and subtracting \(V_{ctrl}\) to the expression within the brackets, we get,

\[
\frac{1}{R_L} = \mu_p C_{\alpha} \left(\frac{W}{L} \right) \left[2V_{ctrl} - 2V_{tp} + \frac{V_{tp}^2}{V_{ctrl}} - V_{ctrl} \right]
\]

\[
= \mu_p C_{\alpha} \left(\frac{W}{L} \right) \left[2V_{ctrl} - 2V_{tp} + \frac{V_{tp}^2 - V_{ctrl}^2}{V_{ctrl}} \right]
\]

\[
= \mu_p C_{\alpha} \left(\frac{W}{L} \right) \left[2V_{ctrl} - 2V_{tp} + \frac{V_{ctrl} + V_{tp}}{V_{ctrl}} (V_{tp} - V_{ctrl}) \right]
\]

Defining \(\alpha = \frac{V_{ctrl} + V_{tp}}{V_{ctrl}}\), the expression for the load conductance reduces to,

\[
\frac{1}{R_L} = \mu_p C_{\alpha} \left(\frac{W}{L} \right) \left(2 - \alpha \right) \left[V_{ctrl} - V_{tp} \right] \quad \text{...(3.5)}
\]

Next, we derive an expression for the oscillation frequency \((f_{osc})\). The delay per stage \((T_d)\) of the oscillator is given by the product of the effective output resistance and the effective output capacitance (which includes the loading effects of the subsequent stages) of the delay stage. The effective output resistance is the parallel combination of
that of the load and the output resistance of the n-MOS differential pair (M1 or M2 in Fig.3.2). And, since the output resistance of the load is typically much lesser, it dominates. Therefore, the delay per stage is given by

\[T_d = R_L \cdot C_{\text{eff}} = \frac{C_{\text{eff}}}{\mu \alpha \left(\frac{W}{L} \right) (2 - \alpha) \left(V_{\text{ctrl}} - V_{\text{tp}} \right)} \quad \text{...(3.6)} \]

Now, substituting Eq.3.6 into Eq.3.1, we get

\[f_{\text{osc}} = \frac{\mu \alpha C_{\text{ox}}}{2N C_{\text{eff}}} \left(\frac{W}{L} \right) (2 - \alpha) \left(V_{\text{ctrl}} - V_{\text{tp}} \right) \quad \text{...(3.7)} \]

It should be noted that for values of \(V_{\text{ctrl}} \) that are large in comparison to \(V_{\text{tp}} \), \(\alpha \) does not change appreciably with changes in \(V_{\text{ctrl}} \). Hence, the relationship between the VCO operating frequency and the control voltage is linear to a first order. This is desirable especially in a PLL based system because a highly non-linear voltage-frequency characteristic tends to degrade the performance of the PLL on account of a non-constant VCO gain.

3.2 MOSFET Noise Analysis

The expression for modeling the thermal noise in MOSFETs used in most of the literature is as given below

\[\overline{i_d^2} = \left(\frac{2}{3} \right) 4kTg_m\Delta f \quad \text{...(3.8)} \]

where, \(g_m \) is the transconductance at the operating point. However, this model is valid only in the saturation region and is invalid in the triode region of operation [34,35]. For instance, Eq.3.8 predicts zero noise when \(V_{\text{ds}}=0 \) whereas the thermal noise is maximum
at this point. In the saturation region, the model works well, though it always predicts a noise that is lower than the actual as can be seen from Fig.1 of [34].

A model for the thermal noise that works well in both the saturation and triode regions in the case of long-channel devices is given by [35,36],

$$\overline{i_d^2} = \gamma \cdot 4kT g_{do} \Delta f \quad \ldots(3.9)$$

where, g_{do} is the device conductance for zero drain-source bias and $\gamma = 2/3$ for saturation and ranges from $2/3 < \gamma < 1$ in the triode region. For deep triode region, γ is close to 1.

An expression for γ is derived by Van Der Ziel in [37,38] and is given as below,

$$\gamma = \frac{1 - \nu + \left(\nu^2 / 3\right)}{1 - \nu / 2} \quad V_d < V_{dsat}$$

$$\gamma = 2/3 \quad V_d \geq V_{dsat} \quad \ldots(3.10)$$

where, $\nu = V_d / V_{dsat}$. As can be observed, for $V_{ds} = 0$, $\gamma = 1$ and in saturation $\gamma = 2/3$ and stays constant.

A more accurate but complex expression is derived in [34] which involves the actual operating point of the device. But, this essentially simplifies to Eq.3.9 once the higher order effects are neglected. Also, a comparison of both the models in [34] indicates a good match between the two for long-channel devices in both the triode and saturation regions. In this work, Eq.3.9 will be employed along with Eq.3.10 to model the noise in the symmetric load devices.
3.3 Symmetric Load Noise Analysis

At equilibrium (i.e. no switching), the voltage drop across the load is $V_{\text{ctrl}}/2$ (this is ensured by the biasing network). Refer Fig.3.3. Transistor M2 is in saturation and transistor M1 is in saturation/triode region depending on the value of V_{ctrl} (if $V_{\text{ctrl}} > 2V_{tp}$ then it is in the triode region). To keep the analysis general, no assumption is made at this point about the region of operation of M1.

Neglecting short channel effects, g_{do} equals g_m to a first order [35].

$$g_{do} = \beta (V_{gs} - V_t) = g_m$$ \hspace{1cm} \ldots(3.11)

Therefore, using Eqs.3.9 & 3.11, the total thermal noise due to the symmetric load at equilibrium is,

$$i_T^2 = 4kT \gamma_1 g_{m1} + 4kT \left(\frac{2}{3}\right) g_{m2}$$ \hspace{1cm} \ldots(3.12a)

where,

$$g_{m1} = \mu_p C_\alpha \left(W/L\right)[V_{\text{ctrl}} - V_{tp}]$$ \hspace{1cm} \text{and} \hspace{1cm} $$g_{m2} = \mu_p C_\alpha \left(W/L\right)\left[\frac{V_{\text{ctrl}}}{2} - V_{tp}\right]$$ \hspace{1cm} \ldots(3.12b)

Depending on the value of V_{ctrl} and using Eq.3.10, γ_1 can be calculated. Now, lets consider the case of one end of the swing where V_{drop} is close to zero and M1 is in the linear region and M2 is cut-off. The noise current spectral density in this case is given by,

$$i_T^2 = 4kT \gamma_2 g_{m1}$$ \hspace{1cm} \ldots(3.13)

Here, γ_2 will be very close to ‘1’ as transistor M1 will be in deep triode region.
In the case of the other end of the swing where $V_{\text{drop}} = V_{\text{ctrl}}$, both M1 & M2 are in saturation and so the noise current spectral density in this case is given by,

$$i_r^2 = 4kT \left(\frac{2}{3} g_{m1} + 4kT \left(\frac{2}{3} g_{m2} \right) \right)$$

...(3.14a)

In this situation, the transconductance of both the transistors is equal and so,

$$i_r^2 = 4kT \left(\frac{4}{3} g_{m1} \right)$$

...(3.14b)

Using Matlab and the noise equations developed above, the noise current spectral density is plotted for a symmetric load of $W/L=10\mu/2\mu$ for the AMI 0.5u process. Fig.3.4 shows the result. As the voltage drop across the symmetric load varies, the noise current spectral density varies too (this situation occurs during switching). In order to keep the analysis of jitter simple, the noise current density will be approximated by the average of Eqs. 3.12 – 3.14 and this approximation gets better for smaller values of V_{ctrl} as can be seen from Fig.3.4. A similar approach is adopted in [10].

![Figure 3.4 Variation of noise spectral density with voltage drop across the load](image-url)
3.4 Timing Jitter in Ring Oscillators

Timing jitter occurs because of noise sources both internal and external to the oscillator. The external sources in most cases include the noise injection from nearby circuitry and power supply noise. These interfering sources however can be minimized through circuit techniques such as differential implementations. The fundamental limit is presented by the internal noise sources of the circuit components used to implement the oscillator. In the case of the symmetric load ring oscillator, these include the flicker and thermal noise of the transistors present. Ring oscillators eventually find application as VCOs in PLLs and it can be shown that the PLL presents a high-pass transfer function to the VCO output noise. Therefore, the thermal noise is the most significant contributor to noise [39]. And so, the key to achieving low jitter VCOs is to understand the effects of thermal noise and minimizing its impact.

Several authors [39,40,41] have analyzed the issue of timing jitter in ring oscillators. The class of circuitry explored has been source-coupled differential delay cells with resistive loads, where the loads have been realized in CMOS technology using pMOS transistors in the triode region of operation [39,40]. A similar analysis for bipolar transistors has been presented in [41]. The approach in [39] takes into account some of the higher order effects like inter-stage amplification that are not considered in [41]. In this thesis, using the framework established in [10,39], the analysis is carried out for the symmetric load case.
In the analysis that follows, each delay stage in the ring oscillator is assumed to have a delay of \(t_d \) and a timing error of \(\Delta t_d \) that it imparts to each edge that passes through it on account of the noise in the transistors that make up the delay stage. This is illustrated in Fig.3.5 [10].

The timing error has a mean of zero and a variance given by \(\Delta t_d^2 \). Now, to a first order, the delay per stage is measured from the time the outputs begin switching to the time when the differential output reaches zero as illustrated in Fig.3.6. Using this assumption, the delay per stage can be expressed as,

\[
t_d = V_{SW} \frac{C_L}{I_{SS}}
\]

where, \(I_{SS}/C_L \) is the output slew rate and \(V_{SW} \) is the total change in the differential output voltage at the 50% point of the transition. Expressed differently, the time delay represents the time taken for the load capacitances to charge/discharge such that the differential output voltage becomes zero. Now, if we make an assumption that the next stage switches abruptly when the differential output voltage reaches zero (as shown in Fig. 3.6), the timing error per stage due to noise can be easily calculated.

![Figure 3.5 Intrinsic timing error per delay stage](image-url)
The problem now breaks down to finding the timing error associated with the zero crossing of the differential output voltage. Any timing error associated with this zero crossing propagates to the subsequent stages and corrupts its timing performance. This problem, commonly known as the “first crossing problem” can be solved by a “first crossing approximation” [42]. This is illustrated in Fig.3.7. As can be seen, a voltage noise on the differential output shifts the time of zero crossing by Δt_d (timing error). To a first order (“first crossing approximation”), the timing error is given by the voltage error divided by the slew rate at the output. Hence, the variance of the timing error is given by,

$$\Delta t_d^2 = \Delta V_n^2 \times \left(\frac{C_L}{I_{SS}}\right)^2$$

... (3.16)

The above equation serves as a link from voltage noise uncertainty to the timing jitter and in [10], the “first crossing approximation” is modified to include some of the higher order effects like inter-stage amplification.

Figure 3.6 Output waveforms for differential delay stages
Figure 3.7 First crossing approximation for timing jitter

The noise sources present in the delay stage are highly time varying in nature, an example of which is the symmetric load presented earlier. In the case of the symmetric load, the noise source has been approximated by an average value. The time varying nature of the n-MOS differential pair and the tail current sources however has to be dealt with using auto-correlation functions and convolution [10]. This is because during a voltage swing, the transistors in the differential pair switch from being fully on to fully off, during which the transconductance and the noise contribution varies significantly. The same is true with the tail current noise as it appears as a common mode noise in the equilibrium case, but contributes directly to the output during switching. Thus, the noise variation is much more when compared to the load, hence requiring a rigorous mathematical analysis.

Here, a first order analysis will be presented assuming equilibrium conditions just to illustrate the concept. Also, the effect of the symmetric loads will become evident. Thereafter, the scenario for the case of a simple p-MOS load (as analyzed in [10]) and the symmetric loads are similar. That is, the issues of time-varying noise sources (n-MOS differential pair and tail current noise) and inter-stage amplification are independent of
the load used. Hence, the final results in [10] are modified to include the contribution of the symmetric loads. The detailed mathematical rigor needed in accounting for the higher order effects can be found in [10].

The symmetric load delay cell along with the noise sources is shown in Fig.3.8. The noise current source \(i_{t1}^2\) represents the average noise source of the symmetric loads as discussed in the earlier section and is given by,

\[
i_{t1}^2 = \frac{4kT}{3} \left[\left(\gamma_1 + \gamma_2 + \frac{4}{3} \right) g_{m1} + \frac{2}{3} g_{m2} \right]
\]

... (3.17)

and \(i_{v5}^2, i_{v6}^2, i_{v7}^2\) and \(i_{v8}^2\) represent the noise current densities of transistors M5-M8.

Now, the total output voltage noise can be determined through conventional noise analysis techniques [43],

\[
\overline{V_n^2} = \int_0^\infty \left(\overline{i_{t1}^2(f)} |H_1(f)|^2 + \overline{i_{t2}^2(f)} |H_2(f)|^2 + \overline{i_{v5}^2(f)} |H_5(f)|^2 + ... \right) df
\]

... (3.18)

where, \(\overline{V_n^2}\) is the total noise voltage and \(H_1(f), H_2(f), ...\) are the transfer functions to the output for the various noise current sources.

The tail current noise of transistors M7 & M8 split equally and appear on each side of the differential output. They represent a common mode noise and hence a differential noise of zero. Therefore, the AC noise model for this circuit is as given in Fig. 3.9 [10]. Here, \(R_L\) represents the effective resistance at the output node and \(C_L\) represents the effective capacitance including the input capacitance of the subsequent stage.
Now, the output voltage noise due to transistor M5 is given by,

\[
\bar{V}_{n5}^2 = \int_0^{\infty} 4kT \left(\frac{2}{3} \right) g_{m5}^2 \left| \frac{R_L}{1 + j2\pi fR_L C_L} \right|^2 df
\]

...(3.19)

The 3-dB bandwidth of the RC system is given by,

\[
f_{3dB} = \frac{1}{2\pi R_L C_L}
\]

...(3.20)

Using Eq.3.20 in Eq.3.19, we get,

\[
\bar{V}_{n5}^2 = 4kT \left(\frac{2}{3} \right) g_{m5}^2 R_L^2 \int_0^{\infty} \frac{1}{1 + f / f_{3dB}} \left| \frac{1}{1 + j2\pi fR_L C_L} \right|^2 df
\]

...(3.21)
The integral in Eq. 3.21 reduces to \((\Pi/2)f_{3dB}\) and so we get,

\[
\overline{V_{n5}^2} = \frac{kT}{C_L} \left(\frac{2}{3} \right) g_{m5} R_L = \frac{kT}{C_L} \left(\frac{2}{3} \right) a_v
\] \(\ldots(3.22)\)

where, \(a_v\) represents the small signal gain of the delay stage. Since, M5 and M6 are identical, the noise voltage due to M6 is the same as that of M5 and so \(\overline{V_{n5}^2} = \overline{V_{n6}^2}\).

Next, we derive the noise voltage due to the symmetric loads.

\[
\overline{V_{nt1}^2} = \int_0^\infty \frac{4kT}{3} \left[\left(\gamma_1 + \gamma_2 + \frac{4}{3} \right) g_{m1} + \frac{2}{3} g_{m2} \right] \left[\frac{R_L}{1 + j 2\pi f R_L C_L} \right]^2 df
\] \(\ldots(3.23)\)

Solving for the integral as before and simplifying using \((R_L=1/(2-\alpha)g_m))\) we get,

\[
\overline{V_{nt1}^2} = \frac{kT}{3C_L} \left[\left(\gamma_1 + \gamma_2 + \frac{4}{3} \right) \frac{1}{(2-\alpha)} + \frac{2}{3} g_{m2} R_L \right]
\] \(\ldots(3.24)\)

Assuming independent noise sources, the total noise voltage is given by,

\[
\overline{V_n^2} = 2\overline{V_{n5}^2} + 2\overline{V_{nt1}^2}
\]

\[
= \frac{kT}{C_L} \left[2 \cdot \frac{2}{3} a_v + \frac{2}{3} \left(\left(\gamma_1 + \gamma_2 + \frac{4}{3} \right) \left(\frac{1}{(2-\alpha)} + \frac{2}{3} g_{m2} R_L \right) \right) \right]
\] \(\ldots(3.25)\)

The first term within the brackets represent the noise due to the nMOS differential pairs and the second term represents the noise due to the symmetric loads. In order to simplify the analysis, the following definition of a noise contribution factor is made.

\[
\overline{V_n^2} = \frac{kT}{C_L} \cdot \xi^2
\] \(\ldots(3.26)\)

where,
The term ξ^2 is called the noise contribution factor. Further analysis including the higher order effects will only result in modifications to ξ^2.

Now, using Eqs. 3.15 & 3.16, we get,

$$\frac{\Delta t_{\text{dms}}}{t_d} = \sqrt{\frac{kT}{C_L}} \cdot \xi \cdot \frac{1}{V_{\text{swing}}} \quad \text{...(3.28)}$$

From the earlier discussions on the characteristics of the symmetric loads, recall that the voltage swing is equal to the control voltage (V_{ctrl}). Substituting this in Eq.3.28, we get,

$$\frac{\Delta t_{\text{dms}}}{t_d} = \sqrt{\frac{kT}{C_L}} \cdot \xi \cdot \frac{1}{V_{\text{ctrl}}} \quad \text{...(3.29)}$$

As has been mentioned earlier, the noise sources associated with the n-MOS differential pairs and the tail currents are highly time varying in nature. These are analyzed in the time domain using autocorrelation functions and convolution in [10]. Also, for a typical CMOS delay chain, the switching times of adjacent stages overlap, unlike what has been shown in the simplistic model of Fig. 3.5. This means that there are times when more than one stage is in the active region of amplification. This has been suitably accounted for in [10]. Analyzing these second order effects, the noise contribution factor changes and the output noise voltage gets multiplied by a factor of $a_v^2/2$. This is as shown below,

$$\overline{V^2_n} = \frac{kT}{C_L} \cdot \xi^2 \cdot \frac{a_v^2}{2} \quad \text{...(3.30)}$$
Again, using Eqs. 3.15 & 3.16, we get,
\[
\frac{\Delta t_{d_{\text{rms}}}}{t_d} = \sqrt{\frac{kT}{2C_L}} \cdot \xi \cdot \frac{1}{V_{\text{sat}}}
\]
\[\text{...(3.31)}\]

The above equation gives the timing jitter normalized to the period of oscillation. The absolute timing jitter is given by
\[
\Delta t_d = \sqrt{\frac{kT}{2}} \cdot \frac{a_v}{I_{SS}} \cdot \xi
\]
\[\text{...(3.32)}\]

Eq.3.32 presents the results of jitter analysis for a single delay stage in the ring oscillator. Now, if the goal is to design a ‘N’ stage ring oscillator, then assuming that the noise per stage is independent of the other stages, the total jitter for one cycle of oscillation can be expressed as,
\[
\overline{\Delta t_{VCO}}^2 = 2N \cdot \Delta t_d^2
\]
\[\text{...(3.33)}\]

If the desired time period of oscillation is \(T_0\) and the time delay per stage is \(t_d\), then
\[2N = \frac{T_0}{t_d}\]. Now using Eqs. 3.32 & 3.15 in Eq.3.33, we get,
\[
\overline{\Delta t_{VCO}}^2 = T_0 \left(\frac{I_{SS}}{C_L \cdot V_{SW}} \right) \frac{kT C_L}{2 \cdot (I_{SS})^2} \cdot (a_v \xi)^2
\]
\[= \frac{kT}{2 \cdot I_{SS} \cdot V_{SW}} \cdot \left(\frac{a_v \xi}{t_d} \right)^2 \cdot T_0 = \frac{kT}{2 \cdot I_{SS}} \cdot \frac{a_v \xi^2}{(V_{GS} - V_T)} \cdot T_0
\]
\[\text{...(3.34)}\]

Now, looking at Eq.3.34, it is clear that in order to minimize the cycle-to-cycle jitter, we need to design the n-MOS differential pair such that they have a maximum gate overdrive \((V_{GS} - V_T)\), increase the bias current (hence power dissipation) and have a minimum required gain. The noise contribution factor \(\xi^2\) is to a first order insensitive to design parameters [10]. The small signal gain of the differential pair can be
approximated as $\alpha = \frac{V_{SW}}{V_{GS} - V_T}$. The implication of this is that, one cannot simply increase the gate overdrive without a corresponding increase in the output voltage swing, as a minimum gain is required for the ring to oscillate. Ideally one would like to design the ring with maximum possible power dissipation, maximum gate overdrive for the n-MOS differential pair (hence maximum possible swing) and a minimum required gain (typically 1.5 –3.0).

However, the situation of maximum gate overdrive and a corresponding increase in the output voltage swing is not something that is easily achieved. While using resistively biased p-MOS loads (as has been discussed in [10]), the voltage swing is constrained by the fact that one has to maintain the loads in the linear region and in some cases in the deep triode region, thereby making large swings difficult to achieve. This restriction however is not present in the case of the symmetric loads. Here, the voltage drop across the load swings from 0 to V_{cntrl} and hence by a proper choice of V_{cntrl}, the oscillator can be designed for a large voltage swing.

Another consideration that sets the limit on the voltage swing in the case of both the symmetric loads and the p-MOS resistively biased loads is the issue of maintaining the n-MOS differential pairs in saturation during the entire voltage swing. Failure to do so can lead to distortion in the waveforms as the devices are changing regions of operation during the swing [10].
From the discussion above it can be observed that the symmetric loads offer the advantage of a larger swing than the p-MOS loads. So a possible solution could be to design a symmetric load VCO with a maximum possible swing and hence achieve low jitter/phase noise. The key issue with the symmetric loads is that frequency variation is achieved through V_{ctrl} and hence changing V_{ctrl} will change the output voltage swing. Hence what is needed is an architecture using symmetric loads that optimizes the swing (based on keeping the differential pairs in saturation, phase noise requirement and power dissipation) and also achieves frequency variation without changes in the output swing. Such an architecture is the subject of discussion in the next chapter.
4 Swing Optimized Body Driven Oscillator

In Chapter 3, the need for an increase in voltage swing in order to achieve low jitter/low phase noise oscillators was presented. In the case of the symmetric loads, the upper limit on the voltage swing is set primarily by the condition that the n-MOS differential pairs remain in saturation during the entire voltage swing. This is important to avoid distortion in the output waveform. A conventional ring oscillator with the symmetric load can thus be optimized for a large output voltage swing. This architecture however poses a serious limitation in that it cannot achieve frequency variation without a resultant change in the output voltage swing. The oscillator developed in this thesis sets the output voltage swing at the maximum allowed value and achieves frequency variation by driving the body (n-well) of the symmetric loads.

This chapter begins by deriving an expression for the maximum possible voltage swing that can be tolerated and still keep the n-MOS differential pairs in saturation. The proposed oscillator architecture is presented next and its frequency vs. control voltage characteristic is derived. The phase noise does not vary appreciably along the frequency range of the oscillator and this is explained theoretically by means of a derivation. The implication of this result is discussed next. This is followed by simulation results of the oscillator designed for the AMI 0.5µ process and the match between theoretical predictions and simulation results is illustrated.
4.1 Maximum Possible Voltage Swing

In this section, an expression is derived that gives the maximum possible voltage swing at the output of the oscillator given the condition that the differential pairs remain in saturation throughout the swing. Following the derivation in [10], the differential pair transistors will remain in saturation if the voltage swing is kept below the n-MOS threshold voltage. For the symmetric loads, this translates to,

\[V_{\text{ctrl}} \leq V_{tn} \] \quad ...(4.1)

where, \(V_{tn} \) is the n-MOS threshold voltage including body effect.

Now, to maximize the swing, one needs to increase the threshold voltage. This however is not possible in a bulk CMOS process if an n-MOS differential pair is to be used. A possible solution could be to use a p-MOS differential pair with n-MOS symmetric loads. Using p-MOS symmetric loads with n-MOS differential pair (as has been discussed so far) has an additional advantage of enabling frequency control (in a Bulk CMOS process) due to which we will investigate this type of oscillator.

Since increasing the n-MOS threshold voltage using body driving is not possible in bulk CMOS, we have to resort to biasing and a proper choice of the aspect ratio of the transistors in the differential pair. This way, it is possible to introduce sufficient body effect by increasing the common source voltage of the differential pair. In the analysis that will follow, an expression is derived that will aid in the selection of the proper voltage swing (\(V_{\text{ctrl}} \) in the case of the symmetric load).
The output voltage of the symmetric load ring oscillator swings from V_{dd} to $V_{dd} - V_{cntrl}$. And since the input of one stage is connected to the output of the previous stage, the inputs also follow the same swing. Now, consider the end of the swing, where the output voltage is V_{dd}. This is applied to the gate of one of the n-MOS transistors in the differential pair. The voltage drop across the load in this case is V_{cntrl} giving a drain voltage of $V_{dd} - V_{cntrl}$ for the particular transistor. This condition corresponds to the case of maximum gate voltage and minimum drain voltage and hence the transistor is most vulnerable to come out of saturation at this point. So, we choose V_{cntrl} such that it is equal to the threshold voltage of the n-MOS transistor in this condition.

At this point, the tail current is completely switched to one side and the total tail current of I_{SS} flows through the transistor. Using first level equations,

$$I_{SS} = \frac{\mu C_{ox}}{2} \left(\frac{W}{L} \right) \left[V_{gs} - V_{tn} \right]^2 = \frac{\mu C_{ox}}{2} \left(\frac{W}{L} \right) \left[V_{dd} - V_s - V_{tn} \right]^2 \quad \cdots (4.2)$$

where, V_s is the source voltage, $(W/L)_d$ is the aspect ratio of the n-MOS differential pair transistors and V_{tn} is the threshold voltage of the n-MOS transistors including body effect.

The effect of body voltage on the threshold voltage is modeled in [44] as,

$$V_{tn} = V_{tno} + \frac{\gamma_n \cdot V_{sb}}{2\sqrt{2|\phi_f|}} \quad \cdots (4.3)$$

where, V_{tno} is the threshold voltage with zero body effect, V_{sb} is the source to bulk voltage and ϕ_f is the Fermi potential. In the case of an n-MOS, the bulk, which is the
substrate, is usually connected to the lowest potential, typically ground for a single supply system. Assuming such a system, $V_{sb} = V_s$, and substituting this in Eq.4.3 and solving for V_s, we get,

$$V_s = \frac{2\sqrt{2|\phi_1|}}{\gamma_n} \cdot (V_{tn} - V_{tno})$$

$$= \theta_n \cdot (V_{tn} - V_{tno})$$ \hspace{1cm} \text{(4.4)}

where θ_n is defined as,

$$\theta_n = \frac{2\sqrt{2|\phi_1|}}{\gamma_n}$$ \hspace{1cm} \text{(4.5)}

It should be noted that θ_n is dimensionless.

And as stated earlier, in an effort to set the swing as high as possible, V_{cntrl} is set to equal V_{tn}. Using this condition and Eq.4.4 in Eq.4.2, we get,

$$I_{SS} = \frac{\mu_s C_{ox}}{2} \left(\frac{W}{L} \right) \left[V_{dd} - \theta_n \cdot (V_{tn} - V_{tno}) - V_{tn} \right]^2$$

$$= \frac{\mu_s C_{ox}}{2} \left(\frac{W}{L} \right) \left[V_{dd} + \theta_n \cdot V_{tno} - V_{tn} (\theta_n + 1) \right]^2$$

$$= \frac{\mu_s C_{ox}}{2} \left(\frac{W}{L} \right) \left[V_{dd} + \theta_n \cdot V_{tno} - V_{and} (\theta_n + 1) \right]^2$$ \hspace{1cm} \text{(4.6)}

Now, the tail current I_{SS} can be approximated as the voltage drop across the load divided by the resistance of the load and hence,

$$I_{SS} = \frac{V_{and}}{R_L}$$ \hspace{1cm} \text{(4.7)}

and,
Using Eqs. 4.7 & 4.8 in Eq. 4.6, we get,

\[I_{SS} = V_{\text{ctrl}} \left(2 \cdot N \cdot f_{\text{osc}} \cdot C_L \right) = \frac{\mu_{\text{n}} \cdot C_{\text{ox}} \cdot W}{2} \left(\frac{W}{L} \right) \left[V_{dd} + \theta_n \cdot V_{tsn} - V_{\text{ctrl}}(1 + \theta_n) \right]^2 \] \quad \text{(4.9)}

The load capacitance \(C_L \) is contributed by a number of parasitic capacitances. However, if we assume that the dominant capacitance is the gate capacitance of the differential pair then,

\[C_L = C_g = \frac{2}{3} (W/L) \cdot C_{\text{ox}} \] \quad \text{(4.10)}

Using Eq.4.10 in Eq.4.9, we get,

\[V_{\text{ctrl}} = \frac{3}{8} \cdot \frac{\mu_{\text{n}}}{N \cdot f_{\text{osc}}} \cdot \frac{1}{L_d} \cdot L \left[V_{dd} + \theta_n \cdot V_{tsn} - V_{\text{ctrl}}(1 + \theta_n) \right]^2 \] \quad \text{(4.11)}

Rearranging we get,

\[\frac{8}{3} \cdot \frac{N \cdot f_{\text{osc}} \cdot L_d}{\mu_{\text{n}}} \cdot V_{\text{ctrl}} = \left[V_{dd} + \theta_n \cdot V_{tsn} - V_{\text{ctrl}}(1 + \theta_n) \right]^2 \] \quad \text{(4.12)}

For a typical process, the mobility is of the order of a few hundred \(cm^2/V \cdot s \) and for reasonable lengths of the order of micrometers; the left hand side of Eq.4.12 is not very significant until we reach very high frequencies (10s of GHz). And so, neglecting the left hand side of Eq.4.12 and solving for \(V_{\text{ctrl}} \), we get,
The above expression sets the upper limit on the control voltage and hence the output voltage swing. For control voltages greater than that given by Eq.4.13, the differential pair will go out of saturation. It is interesting to note that the maximum possible value for $V_{c_{\text{ctrl}}}$ is determined solely by technology parameters and cannot be changed by design.

This can be better understood by a qualitative explanation. The condition that needs to be satisfied for the differential pairs to remain in saturation is that the output swing be less than the threshold voltage of the n-MOS differential pair. Increasing the output swing will mean increasing the threshold voltage, which can be achieved by raising the source voltage (common source point) of the transistors forming the differential pair.

Now, assume that the transistors are initially in saturation for a particular value of output swing. Increasing the source voltage decreases the gate overdrive and decreases the drain-source voltage as well. However, the decrease in the gate overdrive is stronger on account of a decrease in the gate-source voltage and a simultaneous increase in the threshold voltage due to body effect. This means a drain voltage lower than what we began with can still keep the transistor in saturation even though the drain-source voltage dropped as well. This allows for a slightly higher swing than before. If we continue to raise the source voltage, the swing can get larger and larger until a limiting condition is reached when the gate overdrive and the drain-source voltage both collapse.
to zero. It is this condition that is represented mathematically in Eq.4.13. Now the fact that the output swing is independent of design parameters and is totally technology dependent should come as no surprise, as at its core, the analysis involves solving for the condition of zero gate overdrive given a fixed gate voltage of V_{dd}. It should therefore be noted that to avoid the transistor from getting totally cut-off, the swing should be designed for values slightly lower than that obtained by solving Eq.4.13.

4.2 Ring Oscillator Phase Noise

The phase noise for a ring oscillator derived in [10] is as given below.

\[
L(\Delta f) = \left(\frac{f_{osc}}{\Delta f}\right)^2 \cdot \left(\frac{a_t \cdot \xi^2 \cdot kT}{2 \cdot I_{SS} \cdot (V_{gs} - V_t)}\right) \quad \text{... (4.14)}
\]

where, $L(\Delta f)$ represents the phase noise at an offset frequency of Δf and f_{osc} is the frequency of oscillation.

Using Eqs.4.7 & 4.8 and substituting for frequency of oscillation and the bias current I_{SS} in Eq.4.14 we get,

\[
L(\Delta f) = \left(\frac{1}{\Delta f}\right)^2 \cdot \left(\frac{1}{2N R_l C_L}\right)^2 \cdot \left(\frac{a_t \cdot \xi^2 \cdot kT}{2 \cdot \frac{V_{ant}}{R_l} \cdot (V_{gs} - V_t)}\right) \quad \text{... (4.15)}
\]

Substituting $a_t = \frac{V_{ant}}{(V_{gs} - V_t)}$, Eq.4.15 becomes,
\[
L(\Delta f) = \left(\frac{1}{2 \cdot N \cdot \Delta f \cdot C_L} \right)^2 \left(\frac{\xi^2 \cdot kT}{2 \cdot R_L \cdot (V_{gs} - V_t)^2} \right) \quad \text{...(4.16)}
\]

The objective of this analysis is to find theoretically the variation of the phase noise at a particular offset across the frequency range of an oscillator. For the type of ring oscillators being discussed, different frequencies are achieved by varying the resistance of the loads. Hence the terms within the first bracket in the right hand side of Eq.4.16 remain constant across the frequency range of the oscillator. In the second bracket, the noise contribution term is relatively insensitive to delay cell design parameters [10] and hence can be assumed constant with frequency. The only parameters that need to be considered are \(R_L \) and the square of the gate overdrive.

Consider the expression for the bias current given below,

\[
\frac{I_{SS}}{2} = \frac{\mu_s C_m}{2} \left(\frac{W}{L} \right) \cdot \left[V_{gs} - V_t \right]^2 = \frac{V_{SW}}{2R_L} = \frac{V_{ctrl}}{2R_L} \quad \text{...(4.17)}
\]

If the scenario is such that \(R_L \) varies (hence frequency variation) in such a way that the output swing remains constant, then the product of \(R_L \) times the square of the gate overdrive remains constant as well. This can be observed from Eq.4.17. Using this development in Eq.4.16, theoretically the phase noise would be expected to remain constant with frequency.

The implication of this result is that if we design an oscillator subject to conditions assumed above, the phase noise performance will remain unaltered across the frequency range of the oscillator. Also, now the oscillator phase noise can be optimized by
maximizing the swing (subject to conditions derived earlier) and if the swing is maintained constant across frequency, the phase noise performance will remain unaltered. The above discussions on swing maximization and oscillator phase noise set the stage for the presentation of the proposed oscillator topology, which follows next.

4.3 Swing Maximized Body Driven Oscillator

From the discussion on the symmetric loads, it must be clear that a change in the control voltage \(V_{\text{cntrl}}\) leads to a change in frequency. Thus, by setting \(V_{\text{cntrl}}\) at its optimum value as derived before, only one frequency can be implemented. Therefore, to make full use of the output voltage swing optimization, one should be able to fix the swing at its maximum and still vary the frequency of operation. The solution to this problem is body driving the n-well of the p-MOS symmetric loads and is as developed below.

The relationship between the control voltage and frequency for the symmetric load ring oscillator as derived earlier is given below for convenience.

\[
f_{\text{osc}} = \frac{\mu_p C_{\text{ox}}}{2N C_{\text{eff}}} \left(\frac{W}{L} \right) \left(2 - \alpha \right) \left[V_{\text{cntrl}} - V_{\text{tp}} \right]
\] … (4.18)

As can be seen, by fixing \(V_{\text{cntrl}}\) and varying the p-MOS threshold voltage, a voltage controlled oscillator results with a fixed output voltage swing as desired. Now, \(V_{\text{cntrl}}\) can be set to the optimum value and a frequency control is achieved by putting the body effect to good use. This can be achieved elegantly in bulk CMOS technology, as the p-MOS transistors are isolated by the n-Wells. This is the reason for choosing an n-MOS
differential pair with p-MOS symmetric loads as opposed to p-MOS differential pairs with n-MOS symmetric loads.

The p-MOS threshold voltage including the body effect is modeled in [44] as below,

\[V_{tp} = V_{tpo} - \gamma_p \frac{V_{bs}}{\sqrt{2V_{th}}} \] \hspace{1cm} \ldots (4.19)

Using the above expression in Eq.4.14 and denoting \(V_{bs} \) as \(V_{bulk} \), we get,

\[
\mu \alpha = -2 \gamma_p x_p u_l k \osc cntrl tpo_\seff f C V W f V V_{NC L} \left[\left(2 - \alpha \right) \left(V_{atril} - V_{tvo} - \frac{\gamma_p V_{bulk}}{\sqrt{2V_{th}}} \right) \right]
\]

\[
\mu \alpha = -2 \gamma_p x_p u_l k \osc cntrl tpo_\seff p C V W f V V_{NC L} \left[\left(2 - \alpha \right) \left(V_{atril} - \frac{V_{bulk}}{\theta_p} \right) \right]
\] \hspace{1cm} \ldots (4.20)

When \(V_{ctrl} \) is larger than the threshold voltage \(V_{tp} \), changes in the threshold voltage (through body effect) required to generate a new frequency does not cause appreciable changes in the value of \(\alpha \). Thus, the frequency vs. bulk voltage characteristic will be almost linear. The range of values possible for the bulk voltage is limited by considerations of forward biasing the source-bulk p-n junction and gate oxide breakdown. Based on these limits, a range of 4.6V - 6.0V has been chosen for simulations.

Having a large output voltage swing provides the luxury of a high gate overdrive and hence power dissipation; all of which are critical to achieving a low jitter/low phase noise oscillator. The limitation to voltage swing is posed by the choice of technology.
Interestingly, if the voltage swing remains constant with frequency, then it is sufficient to optimize the phase noise for one particular frequency. Thus using the proposed oscillator topology, a low phase noise oscillator is possible by employing a high output voltage swing. Variation in the frequency is achieved through body driving and the same phase noise performance can be achieved across frequencies.

A design methodology would now involve choosing a high output voltage swing and a correspondingly high gate overdrive for the n-MOS differential pairs such that the small signal gain (given by the quotient of the two) is just a little more than the minimum required for oscillation. A value for the tail current is chosen to be the maximum possible given power dissipation requirements. The values chosen for the tail current and the output voltage swing set the load resistance. A desired frequency can now be achieved by varying the gate-source capacitance of the n-MOS differential pair transistors. These conditions now set the phase noise for the required frequency. Frequency variation can be achieved through body driving and the same phase noise performance can be expected.

4.4 Simulation Results

A set of three oscillators (Osc-1, Osc-2 & Osc-3) was designed using AMI 0.5µ technology, to analyze the effects of power dissipation, output voltage swing and gate overdrive on the phase noise of the oscillator and also to verify the design methodology presented earlier. In order to ensure a fair comparison between the three oscillators, all of them were designed to oscillate at 100MHz and their small signal gain was fixed at
approximately 2.5. The circuit details of the oscillator system are presented in Appendix-B and the simulations were performed using SPECTRE RF.

Approximating the value of $2\phi_F$ as 0.6V and using $\gamma_n = 0.48$ from the MOSIS parametric test results for the AMI0.5µ process [45], the maximum swing is calculated to be 1.8V using Eq.4.13. As mentioned earlier this represents the mathematical maximum and a practically possible swing turns out to be about 1.5V. This sets an upper limit on the achievable gate overdrive for a given minimum small signal gain.

The three oscillators were designed for three different swings (1.5V, 1.4V & 1.3V) using three different values (3.5V, 3.6V & 3.7V) at the gates of the p-MOS symmetric loads. The aspect ratio of the p-MOS symmetric loads was kept constant in all the three oscillators while the same oscillation frequency of 100MHz for all the three was achieved by varying the aspect ratios of the n-MOS differential pairs. Since a three-stage ring oscillator was designed, a minimum gain of 2 is required for oscillation. However, in order to account for process variations and also to provide a safety margin, a larger gain is needed. But, the phase noise degrades with too large a gain, and so, as a compromise, all the three oscillators were designed for a gain of approximately 2.5. The simulation results are presented in Table 4.1.
Table 4.1 Simulation Results for Osc-1, Osc-2 & Osc-3

Freq = 100MHz \(V_{BULK} = 5.0V \)

<table>
<thead>
<tr>
<th>Oscillator</th>
<th>(V_{CNTRL})</th>
<th>(I_{SS})</th>
<th>(V_{SW})</th>
<th>(V_{GS-V_{TN}})</th>
<th>Gain</th>
<th>Phase Noise @100KHz Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osc-1</td>
<td>3.5V</td>
<td>101.5(\mu)A</td>
<td>1.5V</td>
<td>0.618V</td>
<td>2.43</td>
<td>-95.50 dBc/Hz</td>
</tr>
<tr>
<td>Osc-2</td>
<td>3.6V</td>
<td>70.83(\mu)A</td>
<td>1.4V</td>
<td>0.5875</td>
<td>2.39</td>
<td>-93.25 dBc/Hz</td>
</tr>
<tr>
<td>Osc-3</td>
<td>3.7V</td>
<td>45.07(\mu)A</td>
<td>1.3V</td>
<td>0.5153</td>
<td>2.52</td>
<td>-90.10 dBc/Hz</td>
</tr>
</tbody>
</table>

![Figure 4.1 Phase Noise plots for Osc-1, Osc-2 & Osc-3](image_url)
From Table 4.1, it can be seen that in the case of Osc-1, a higher output voltage swing has made possible a higher gate overdrive which when coupled with a higher power dissipation leads to a better phase noise performance. Key advantages of having a higher swing and hence a higher gate overdrive is that higher power dissipation can be achieved without a corresponding increase in the area of the n-MOS differential pairs. Fig. 4.1 shows the phase noise plots for the three oscillators.

Now, if the phase noise has been optimized for a given value using acceptable values of swing, gate overdrive and power dissipation, the theory predicts the phase noise to remain the same with frequency variation. Table 4.2 summarizes the phase noise performance of Osc-1 and Osc-2. As can be observed, Table 4.2 validates the developed theory. The phase noise remains approximately constant for both the set of oscillators even though the frequency changes by atleast a factor of 2.3. The implication of this result is that the phase noise performance needs to be optimized for just one frequency and if the swing remains constant across frequencies as in the case of this oscillator, the phase noise remains constant.

As has been mentioned earlier, it is important that the frequency vs. bulk voltage characteristic be linear. This ensures that the gain of the oscillator remains constant. For the proposed oscillator, the Frequency vs. Bulk voltage characteristics has been shown theoretically to be linear. This has been confirmed through simulations and can be observed from Figs.4.2 & 4.3.
Table 4.2 Phase Noise across the frequency range of Osc-1 & Osc-2

<table>
<thead>
<tr>
<th>V_{BULK}</th>
<th>Freq.</th>
<th>Phase Noise @100KHz Offset</th>
<th>V_{BULK}</th>
<th>Freq.</th>
<th>Phase Noise @100KHz Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6V</td>
<td>117.7MHz</td>
<td>-95.4922 dBc/Hz</td>
<td>4.6V</td>
<td>121.9MHz</td>
<td>-93.0358 dBc/Hz</td>
</tr>
<tr>
<td>4.8V</td>
<td>110.3MHz</td>
<td>-95.5782 dBc/Hz</td>
<td>4.8V</td>
<td>112.8MHz</td>
<td>-93.1880 dBc/Hz</td>
</tr>
<tr>
<td>5.0V</td>
<td>100.4MHz</td>
<td>-95.4992 dBc/Hz</td>
<td>5.0V</td>
<td>100.10MHz</td>
<td>-93.2545 dBc/Hz</td>
</tr>
<tr>
<td>5.2V</td>
<td>89.2MHz</td>
<td>-95.4969 dBc/Hz</td>
<td>5.2V</td>
<td>85.76MHz</td>
<td>-93.2133 dBc/Hz</td>
</tr>
<tr>
<td>5.4V</td>
<td>78.26MHz</td>
<td>-95.3603 dBc/Hz</td>
<td>5.4V</td>
<td>72.20MHz</td>
<td>-93.2631 dBc/Hz</td>
</tr>
<tr>
<td>5.6V</td>
<td>68.05MHz</td>
<td>-95.3147 dBc/Hz</td>
<td>5.6V</td>
<td>59.47MHz</td>
<td>-93.3434 dBc/Hz</td>
</tr>
<tr>
<td>5.8V</td>
<td>58.39MHz</td>
<td>-95.3014 dBc/Hz</td>
<td>5.8V</td>
<td>47.90MHz</td>
<td>-93.4982 dBc/Hz</td>
</tr>
<tr>
<td>6.0V</td>
<td>49.43MHz</td>
<td>-95.2866 dBc/Hz</td>
<td>6.0V</td>
<td>37.14MHz</td>
<td>-93.6992 dBc/Hz</td>
</tr>
</tbody>
</table>

Figure 4.2 Simulation Results vs. Theory for Osc-1
Now refer to Eq.4.20. The effective load capacitance of the delay stage depends on a number of parasitic capacitances and also varies during oscillation (this variation is because the capacitance contribution from the symmetric loads depends on the region of operation of the transistors and this varies across the swing). Hence an analytical calculation of the load capacitance becomes cumbersome. The load capacitance can however be quickly estimated by solving for C_L in Eq.4.20 for the case of the bulk-source voltage being zero. The value of θ can be estimated from the slope of the frequency vs. bulk voltage characteristic.

Using the above technique, the value of C_L was estimated to be 0.137pF for Osc-1 and 0.098pF for Osc-2. The value of θ was found to be 3.2. Now, assuming a value of 0.6 for $2\phi_s$, the value of γ_p turns out to be 0.48. This is close to the value of 0.59 specified in the
MOSIS parametric test results for AMI0.5μ technology [45]. Figs. 4.2 and 4.3 show the simulated frequency vs. bulk voltage characteristics and the predicted theoretical characteristics. The good fit confirms the validity of the proposed theory.

In summary, the proposed oscillator system maximizes the output voltage swing and hence allows for a higher gate overdrive for a given minimum small signal gain. The higher gate overdrive directly improves the phase noise performance of the oscillator and also allows for higher power dissipation without the need for an increase in size of the n-MOS differential pair transistors. A theoretical limit has been derived for the output voltage swing subject to the condition that the n-MOS differential pair transistors remain in saturation during the entire swing. Also, it has been shown that the phase noise remains constant with frequency if the output swing remains constant. The proposed oscillator achieves this by optimizing the output voltage swing and varying the frequency by driving the body of the p-MOS symmetric loads. The frequency vs. bulk voltage characteristics has been derived and found to be linear. This has been verified with simulation results.
5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Timing jitter has been shown to degrade the performance of the A-D converter. The jitter on the sampling clock, the analog input signal and the aperture uncertainty of the converter all combine to produce a lower SNR for the converter. An expression for the SNR of the converter that takes into effect the overall timing jitter of the system, the quantization noise, differential non-linearity errors and the internal noise sources of the ADC has been presented. This equation has been used to measure the total system jitter. The fundamentals of phase noise have been presented and a technique that enables the extraction of timing jitter from phase noise plots has been explained. A jitter model that works well for a sampling system like the ADC has also been presented. Using the jitter model, the extraction of timing jitter from phase noise plots and the measurement of total system jitter from SNR degradations, the aperture uncertainty of the converter can be estimated. The results of applying this technique to a 10-Bit converter have also been presented.

The issue of effective clock generation has been discussed from the perspective of a ring oscillator. Although crystal oscillators and voltage controlled oscillators with LC tank as the resonant element offer better phase noise performance, the ring oscillator is gaining in popularity on account of its ease of integration. The key design parameters that affect the phase noise performance of the ring oscillator include the output voltage swing, the
gate overdrive of the transistors in the differential pair, the power dissipation and the small signal gain of the delay stage. The gate overdrive is constrained by the maximum possible output voltage swing. This is because the small signal gain is given by the ratio of the output swing to the gate overdrive and so increases in the gate overdrive has to be accompanied by a corresponding increase in the output swing in order to maintain a minimum required gain.

For ring oscillators that use symmetric loads, the output swing is limited by the condition of maintaining the differential pair transistors in saturation throughout the swing. A theoretical derivation has been presented in this thesis that solves for the maximum possible swing subject to the condition that the differential pairs remain in saturation. Interestingly, the maximum possible swing depends entirely on the technology parameters and cannot be changed by design.

Now an oscillator topology that achieves minimum phase noise would be one that is designed for the maximum swing and hence maximum gate overdrive, minimum gain and maximum power dissipation. In the proposed architecture, the symmetric loads have been used as they can be designed with the maximum swing possible for a given technology. But, for a conventional ring oscillator with a symmetric load, this swing can be optimized for only one frequency, thereby not allowing frequency variation. This problem is circumvented by achieving frequency variation by driving the body of p-MOS symmetric loads and varying their threshold voltages.
It has also been shown that for the proposed oscillator topology, the phase noise needs to be optimized for just one frequency. This having been accomplished, the phase noise performance remains unaltered with frequency variation. Also, the frequency vs. bulk voltage characteristics of the oscillator has been derived and shown to be linear. Finally, the theoretical predictions have been found to agree closely with the simulation results.

5.2 Future Work

- For the proposed oscillator, frequency variation is achieved through body driving, on account of which the bulk voltage needs to be higher than the power supplies. When used as a VCO in a PLL based system, the charge pump circuitry will now have to produce voltages above the supply voltage, which is not the case in a conventional PLL. Charge pump architectures will have to be investigated such that this is made possible.

- The proposed architecture when used in bulk CMOS does not have the capability of high frequency operation as it uses p-MOS symmetric loads. The use of n-MOS symmetric loads will straight away achieve a 2.5 times increase in frequency, as the mobility of electrons is approximately 2.5 times the mobility of holes. The use of n-MOS symmetric loads is however not possible on account of the inability to drive the body of the n-MOS in bulk CMOS technology. The ideal technology for this topology is SOI and this prospect needs to be further investigated.
The phase noise of the ring oscillator depends on an interplay between a number of design parameters. One such parameter, the swing has been shown to be entirely technology dependent. From a designer’s perspective, it is important to investigate the effect of choice of technology and technology scaling on the various design parameters that impact the oscillator’s frequency, phase performance etc., such that a judicious choice of technology can be made based on the oscillator specifications.

APPENDIX A – TIMING JITTER ESTIMATION FOR THE 65MHZ SAMPLING CLOCK

The calculations involved in the estimation of timing jitter for the 65MHz sampling clock obtained from a LeCroy Pulse Generator whose external input trigger was from a Rohde & Schwarz signal generator are presented here. Table A.1 summarizes the phase noise values. The table also gives the absolute noise levels assuming a 1mW carrier power. Fig.A.1 shows the phase noise plot.

The phase noise has to be integrated from 12KHz – 20MHz. The region from 12KHz – 100KHz remains almost constant and so integrating we get,

\[1.218 \times 10^{-15} \times 8.8 \times 10^3 = 1.0718 \times 10^{-10} \]

In the region from 100KHz – 1MHz, the phase noise falls as \(1/\Delta f^2\) and so integrating we get,

\[1.503 \times 10^{-15} \times \int_{100K}^{1M} \left(\frac{1}{\Delta f^2} \right) \cdot df = 3.46 \times 10^{-10} \]

From 1MHz to 20MHz,

\[1.581 \times 10^{-16} \times (19e6) = 3.003 \times 10^{-9} \]

Summing all the contributions, we get the equivalent sideband noise power to be 3.456e-9W. Referencing back to 1mW and noting that the for small values of timing jitter, the relative power of the sidebands is equal to the phase noise in rads\(^2\), we get,

\[\text{Phase Noise} = 18.59 \times 10^{-4} \text{ rads} \]

Now, converting to timing jitter we get,

\[18.59 \div (2\pi \times 65e6) = 4.55 \text{ ps rms} \]
Table A.1 Sideband Noise Power vs. Offset Frequency for 65MHz Signal

<table>
<thead>
<tr>
<th>Offset Frequency (Hz)</th>
<th>Phase Noise (dBc/Hz)</th>
<th>Noise power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e3</td>
<td>-108.27</td>
<td>1.489e-14</td>
</tr>
<tr>
<td>10e3</td>
<td>-118.45</td>
<td>1.428e-15</td>
</tr>
<tr>
<td>12e3</td>
<td>-119.14</td>
<td>1.218e-15</td>
</tr>
<tr>
<td>100e3</td>
<td>-118.23</td>
<td>1.503e-15</td>
</tr>
<tr>
<td>1e6</td>
<td>-128.01</td>
<td>1.581e-16</td>
</tr>
<tr>
<td>10e6</td>
<td>-128.86</td>
<td>1.300e-16</td>
</tr>
<tr>
<td>20e6</td>
<td>-128.98</td>
<td>1.264e-16</td>
</tr>
<tr>
<td>100e6</td>
<td>-130.04</td>
<td>9.908e-17</td>
</tr>
</tbody>
</table>

Figure A.1 Phase Noise plot for the 65MHz Sampling Clock
APPENDIX B - THE RING OSCILLATOR SYSTEM

The schematics of the blocks that go into building the ring oscillator system and their simulation results are presented in this appendix. The key components of the ring oscillator are the delay cell that is configured as the ring and the biasing circuitry that gives the symmetric loads their characteristics.

The delay cell for the proposed oscillator is as shown in Fig.B.1. This architecture is similar to the one described in [9] except that the body of the symmetric loads are no longer tied to Vdd but are pulled out as Vbulk to enable frequency control. Vctrl is the difference between the supply voltage and the gates of one of the transistors of the symmetric load (M1 & M3 in Fig.B.1). This difference sets the output voltage swing and also the frequency of oscillation. In the proposed architecture, Vctrl is used to set the output swing and the frequency control is achieved through the body voltage Vbulk. Vbias is obtained from the biasing circuitry and this gives the symmetric load their characteristics as described earlier. The aspect ratios of the transistors in the delay stage for the three oscillators designed (Osc-1, Osc-2 & Osc-3) are summarized in Table B.1.

A bias generator for use with the symmetric loads is reported in [9] and uses a p-MOS differential pair. The p-MOS differential pair does not allow an input common mode that goes close to the power supply rails. However this is required in order to achieve
Figure B.1 Delay Cell for the Proposed Oscillator

Table B.1 Aspect Ratios of the Transistors used in the Delay stage of Osc-1 to Osc-3

<table>
<thead>
<tr>
<th>Oscillator</th>
<th>W/L (M1-M4)</th>
<th>W/L (M5-M6)</th>
<th>W/L (M7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osc-1</td>
<td>12µ/1.2µ</td>
<td>8.7µ/3.9µ</td>
<td>7.2µ/1.2µ</td>
</tr>
<tr>
<td>Osc-2</td>
<td>12µ/1.2µ</td>
<td>5.7µ/3.3µ</td>
<td>7.2µ/1.2µ</td>
</tr>
<tr>
<td>Osc-3</td>
<td>12µ/1.2µ</td>
<td>3.0µ/2.1µ</td>
<td>7.2µ/1.2µ</td>
</tr>
</tbody>
</table>

swings of about 1.5V. This problem is addressed by using an n-MOS differential pair followed by a p-MOS common source stage as shown in Fig.B.2.

The bias generator consists of a simple OTA (M1-M6 & current source ‘I’), followed by a p-MOS common source stage (M7-M8) and a half buffer replica (M9–M12). The transistor M13, configured as a MOS capacitor is connected to the highest impedance
node of the circuit in order to provide adequate phase margin to the feedback network. The OTA and the half buffer replica are connected in a negative feedback fashion such that the drain of the symmetric load is held constant at $V_c (V_{dd} - V_{ctrl})$. The transistors in the half buffer replica, as the name suggests are identical in size to the transistors M1, M2, M5 & M7 of the delay stage in the ring oscillator (refer Fig. B.1). The tail current (I_{SS}) represents the current that flows through the symmetric load when the drop across the load is V_{ctrl} or the voltage at the drain is equal to $V_c (V_{dd} - V_{ctrl})$. With the drain of transistors M9 & M10 set at V_c, the Opamp adjusts its output such that a current of I_{SS} flows through M12. This current is mirrored to the delay stage. This setup ensures that the tail current is set by an identical buffer of the delay stage and most importantly enables the symmetric load to swing from V_{dd} to $V_{dd} - V_{ctrl}$. The aspect ratios of the transistors in the bias generation circuitry are summarized in Table B.2. The W/L ratio of M11 is identical to that of the n-MOS differential pair transistors of the delay stage. In Table B.2, the value of M11 is given for the case of Osc-1.

![Figure B.2 Bias Generation Circuitry](image)
Table B.2 Aspect Ratio for the Transistors of Bias Generation Circuitry

<table>
<thead>
<tr>
<th>M1/M2</th>
<th>M3/M4</th>
<th>M5/M6</th>
<th>M7</th>
<th>M8/M12</th>
<th>M9/M10</th>
<th>M11</th>
<th>M13</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5μ/1.5μ</td>
<td>4.5μ/1.8μ</td>
<td>1.5μ/0.6μ</td>
<td>7.5μ/1.5μ</td>
<td>7.2μ/1.2μ</td>
<td>12μ/1.2μ</td>
<td>8.7μ/3.9μ</td>
<td>15μ/12μ</td>
</tr>
</tbody>
</table>

The current reference circuitry is as shown in Fig. B.3. Transistors M1 – M8 represent the current generation circuitry and transistors M9 – M12 represent the start-up circuitry. The start-up circuitry is essential because the circuit has a stable operating point with zero current through it. The start-up circuitry is designed such that it injects current during initial start-up and is cut-off during normal mode of operation. The operation of the current reference is well explained in [48].

The current source is designed for 50μA and the value of the resistor is chosen to be 20 squares which turns out to be 20.88KΩ for the process considered. Table B.3 summarizes the aspect ratios of the transistors used. The simulations were performed across a temperature range of 0°C - 85°C and also over a power supply range of 4.5V – 5.5V. The process corners were not available from MOSIS and so simulations were performed using model parameters extracted during process runs on three different dates (Model-1 [45], Model-2 [46] and Model-3 [47]). Worst-case simulations were performed for each of the three models specified above by assuming a 20% variation in the value of the resistors. Also, since the resistor was designed to be 20 squares, the absolute value of the resistance was calculated from the sheet resistance of the high-resistive poly specified for each of the processes. Fig.B.4 shows the simulated performance of the current
reference for the case of Model-1 and Table B.4 summarizes the worst-case performance across all the three models.

![Figure B.3 Current Reference Circuitry](image)

Table B.3 Aspect Ratios for the Transistors of Current Reference

<table>
<thead>
<tr>
<th>M 1</th>
<th>M 2</th>
<th>M 3-M 8</th>
<th>M 9/M 10</th>
<th>M 11/M 12</th>
<th>Resistor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5µ/1.2µ</td>
<td>10.5µ/1.2µ</td>
<td>6µ/1.2µ</td>
<td>9µ/1.2µ</td>
<td>3µ/3µ</td>
<td>20 squares</td>
</tr>
</tbody>
</table>

Now, using the current reference in the bias generation circuitry, a stability analysis was performed. Again the simulation was performed across all the three model parameters for the worst-case conditions as described above. Fig.B.5 shows the magnitude and phase of the loop transmission of the feedback system and Table B.5 tabulates the key
parameters such as Gain, Gain Bandwidth product and phase margin for the bias generation system.

Table B.4 Worst-Case Performance of Current Reference for Different Process Runs

<table>
<thead>
<tr>
<th>Model-1</th>
<th>Model-2</th>
<th>Model-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C,4.5V,12.53KΩ</td>
<td>43.73µA</td>
<td>0°C,4.5V,12.33KΩ</td>
</tr>
<tr>
<td>85°C,5.5V,8.35KΩ</td>
<td>59.58µA</td>
<td>85°C,5.5V,8.22KΩ</td>
</tr>
</tbody>
</table>

Figure B.4 Worst-Case Simulation Performance of Current Reference (Model-1)
Table B.5 Summary of worst-case performance for the Bias Generation Circuitry

<table>
<thead>
<tr>
<th>Model - 1</th>
<th>Model - 2</th>
<th>Model - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C, 4.5V, 12.53KΩ</td>
<td>0°C, 4.5V, 12.33KΩ</td>
<td>0°C, 4.5V, 13.14KΩ</td>
</tr>
<tr>
<td>GBW</td>
<td>PM</td>
<td>GBW</td>
</tr>
<tr>
<td>64.69MHz</td>
<td>65°</td>
<td>64.46MHz</td>
</tr>
<tr>
<td>85°C, 5.5V, 8.35KΩ</td>
<td>85°C, 5.5V, 8.22KΩ</td>
<td>0°C, 5.5V, 8.76KΩ</td>
</tr>
<tr>
<td>GBW</td>
<td>PM</td>
<td>GBW</td>
</tr>
<tr>
<td>51.47MHz</td>
<td>55°</td>
<td>51.22MHz</td>
</tr>
</tbody>
</table>

Figure B.5 Magnitude & Phase of the Loop Transmission for the Bias Circuitry
Vita

Venkatesh Srinivasan was born on the 25th of June 1978 in Madras, India. After his initial schooling in Salem and Coimbatore, his family moved back to Madras in 1986. He received his high school diploma from the Hindu Senior Secondary School, Madras in 1995. Interested in an engineering career, he enrolled at Birla Institute of Technology and Science, Pilani, majoring in Electrical Engineering. During the Fall of ’98, he interned at Texas Instruments, Bangalore, as a part of the undergraduate curriculum. In June ’99, he graduated with a Bachelor of Engineering degree in Electrical and Electronics. He then began his career in the industry and was employed at Wipro Technologies, Bangalore, as a VLSI/System Design Engineer, where he worked for a year. In Fall 2000, he enrolled at the University of Tennessee, Knoxville to earn a Master’s in Electrical Engineering. He is currently working under the supervision of Dr. Syed K. Islam at the Analog VLSI and Devices Laboratory. He plans to complete his Master’s with a specialization in Analog IC design in August 2002 and work towards his Ph.D.